
SOLUTION − BANK

PEYAM RYAN TABRIZIAN

This document contains solutions to various Math 1A homework problems I’ve
compiled, from Fall 2010, Spring 2011, and Fall 2013. At first, the solutions might
seem disappointingly short, but don’t worry! As the course progresses, the solutions
become longer and more detailed! It contains solutions to the following problems
from the 7th edition of the book (see next page):
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Section Problems
1.1 7, 8, 22, 38, 51, 63, 69
1.2 2, 4, 8, 16
1.3 1, 7, 14, 30, 36
1.5 2, 4, 7, 9, 17, 20, 21
1.6 3, 5, 6, 17, 18, 26, 52, 63, 69, 70
2.2 2, 6, 32, 33, 46
2.3 9, 10, 13, 18, 20, 26, 29, 32, 37, 40, 60, 61, 64
2.4 2, 4, 11, 19, 32, 37, 42, 43, 44
2.5 3, 11, 20, 28, 38, 44, 51, 54, 60, 69
2.6 4, 16, 26, 38, 43, 61
2.7 6, 12, 17, 18, 19, 32, 36, 40, 42, 48
2.8 3, 23, 40, 43, 54
3.1 20, 32, 35, 47, 54
3.2 15, 33, 41, 49, 57
3.3 37, 39, 40, 55
3.4 12, 15, 39, 45, 49, 63, 66, 67, 68, 72, 80, 85, 86, 92
3.5 3, 19, 29, 30, 32, 44, 45, 46, 51, 53, 54, 63, 77, 80
3.6 11, 21, 41, 44
3.7 4, 8, 17, 26, 31
3.8 6, 9, 11, 19
3.9 5, 13, 15, 27, 40, 45, 46
3.10 2, 11, 15, 21, 35, 40, 43
3.11 9, 11, 15, 21, 23(a), 26, 29(a)(b), 31, 47

3 Review T/F, 68, 87, 94, 99, 101, 105, 111
4.1 6, 38, 39, 41, 43, 51, 57
4.2 6, 11, 17, 18, 23, 29, 32, 34, 36
4.3 2, 9, 13, 27, 33, 43, 45, 49, 77
4.4 3, 4, 11, 16, 17, 27, 29, 45, 49, 53, 58, 61, 76, 77
4.5 5, 13, 43, 45, 49, 71
4.7 3, 13, 14, 21, 23, 32, 48, 57, 61, 67, 70
4.8 38
4.9 16, 35, 41, 63, 76
5.1 2, 5, 13, 17, 19, 20, 22, 23, 30
5.2 18, 21, 23, 30, 34, 37, 43, 44, 47, 54, 56, 69, 70
5.3 7, 15, 17, 31, 35, 37, 39, 43, 45, 57, 67, 70
5.4 10, 12, 13, 25, 31, 37, 49, 54, 61, 62, 63, 64
5.5 7, 31, 33, 48, 59, 62, 77, 86, 92
6.1 1, 3, 13, 21, 42, 43, 51
6.2 6, 13, 17, 47, 49, 55, 65, 68
6.3 2, 13, 15, 19, 46, 48
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Section 1.1: Four ways to represent functions

1.1.7. No (by the vertical line test)

1.1.8. Yes (by the vertical line test), Domain = [−2, 2], Range = [−1, 2]

1.1.22.

(a) The graph of x(t) should just be a line going through the origin
(b) The graph of y(t) should look at first like the right half of a parabola, then

should be constant for a while, and then look like the left half of a parabola
(c) The graph of the horizontal velocity looks like a horizontal line
(d) See announcement on bspace for a detailed solution! The picture you get

is:

1A/Math 1A Summer/Solution Bank/Vertical Velocity.png

1.1.38. Domain = [−2, 2], Range = [0, 2], Graph is just the upper-half of the circle
centered at 0 of radius 2.

1.1.51. f(x) = 5
2x−

11
2

1.1.63. V (x) = x(20− 2x)(12− 2x) (no need to expand the answer!)

1.1.69. f is odd, g is even
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Section 1.2: Mathematical models: a catalog of essential functions

1.2.2.

(a) Exponential function
(b) Power function
(c) Polynomial of degree 5
(d) Trigonometric function
(e) Rational function
(f) Algebraic function

1.2.4.

(a) G
(b) f
(c) F
(d) g

1.2.8. (a) y = 2(x− 3)2, (b) y = −x2 − 5
2x+ 1

1.2.16.

(a) C(x) = 13x+ 900 (C is the cost and x is the number of chairs produced)
(b) 13; Cost per chair
(c) 900; Start-up cost (i.e. money needed to buy machines in order to start

producing chairs)

Section 1.3: New functions from old functions

1.3.1.

(a) y = f(x) + 3
(b) y = f(x)− 3
(c) y = f(x− 3)
(d) y = f(x+ 3)
(e) y = −f(x)
(f) y = f(−x)
(g) y = 3f(x)
(h) y = 1

3f(x)

1.3.7. y = −
√

3(x+ 4)− (x+ 4)2 − 1

1.3.14. Basically compress the graph of sin(x) horizontally by a factor of 3 (notice
that the new period now is 2π

3 and then stretch the resulting graph vertically by a
factor of 4 (so the new graph has range [−4, 4] instead of [−1, 1])

1.3.30.

(a) (f + g)(x) =
√

3− x+
√
x2 − 1

(b) (f − g)(x) =
√

3− x+
√
x2 − 1

(c) (fg)(x) =
√

3− x×
√
x2 − 1

(d)
(
f
g

)
(x) =

√
3−x√
x2−1

All of those functions have domain (−∞,−1] ∪ [1, 3] EXCEPT for (d), which
has domain (−∞,−1) ∪ (1, 3]
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1.3.36.

(a) (f ◦ g)(x) = sin(2x)
1+sin(2x) ; Dom = all odd multiples of π

2

(b) (g ◦ f)(x) = sin
(

2x
1+x

)
; Dom = all real numbers except -1

(c) (f ◦ f)(x) =
x

1+x

1+ x
1+x

= x
1+2x ; Dom = all real numbers except −12 and −1

(d) (g ◦ g)(x) = sin (2 sin(2x)); Dom = all real numbers

Section 1.5: Exponential Functions

1.5.2. (a) 16; (b) 27x7

1.5.4. (a) x4n−3; (b) a
1
6 b−

1
12

1.5.7. Basically, the larger the base, the faster the function is increasing

1.5.9. Notice that
(
1
3

)x
= 3−x, which means that

(
1
3

)x
is the reflection of 3x across

the y-axis! Similarly with 10x.

1.5.17.

(a) y = ex − 2
(b) y = ex−2

(c) y = e−x

(d) y = −ex
(e) y = −e−x

1.5.20. (a) All real numbers ; (b) All ≤ 0 real numbers

1.5.21. f(x) = 3 · 2x

Section 1.6: Inverse functions and logarithms

1.6.3. No; For example, even though 2 6= 6, f(2) = f(6) = 2

1.6.5. No (by the horizontal line test)

1.6.6. Yes (by the horizontal line test)

1.6.17. 0 (You want to find x such that g(x) = 4, that is, find x such that x+ex = 1.
Here, just guess!)

1.6.18.

(a) By the horizontal line test
(b) Domain of f−1 = Range of f = [−1, 3]; Range of f−1 = Domain of f =

[−3, 3]
(c) 0
(d) ≈ −1.8

1.6.26. f−1(x) = ln
(
− x

2x−1

)
= ln

(
x

1−2x

)
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1.6.52.

(a) x = ±
√

1 + e3

(b) x = 0, ln(2) (Let X = ex and solve the equation X2−3X+ 2 = 0 (by using
the quadratic formula), then solve for x using ex = X)

1.6.63.

(a) π
3

(b) π

1.6.69. If θ = sin−1(x), then sin(θ) = x, then draw a triangle with hypothenuse

1, and opposite side x, and then the adjacent side becomes
√

1− x2, and so our
answer becomes:

cos(sin−1(x)) = cos(θ) =
adjacent

hypotenuse
=

√
1− x2

1
=
√

1− x2

See the handout ”Proof of the derivative of arccos” for a similar problem; Or
look at your notes taken in section!

1.6.70. tan(sin−1 x) = sin(sin−1(x))
cos(sin−1(x))

= x√
1−x2

by the result of number 69!

Section 2.2: The limit of a function

2.2.2. If x approaches 1 from the left, then f(x) approaches 3; If x approaches 1
from the right, then f(x) approaches 7. No, left-hand-limits and right-hand-limits
must be equal!

2.2.6.

(a) 4
(b) 4
(c) 4
(d) Undefined
(e) 1
(f) -1
(g) Does not exist (left and right-side limits not equal)
(h) 1
(i) 2
(j) Undefined
(k) 3
(l) Does not exist (h does not approach one fixed value as x approaches 5 from

the left)

2.2.32. −∞ (numerator approaches e−5 > 0 while denominator approaches 0−

2.2.33. −∞ (x2 − 9 approaches 0+ and ln (0+) = −∞

2.2.46. The mass blows up to∞ ( v
2

c2 goes to 1−, so the denominator of the fraction
goes to 0+, and so the whole fraction goes to ∞)

Section 2.3: Calculating limits using the limit laws

2.3.9. Just plug in x = 2
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2.3.10.

(a) If you plug in x = 2, then the left hand side is not defined, but the right
hand side is

(b) The above equation holds if x 6= 2, but the point of limits is that in this
case you don’t care about the value at 2! So in this case, the equality is
correct!

2.3.13. Does not exist (left-hand-limit is −∞ because the numerator tends to 4 and
the denominator tends to 0− while the right-hand-limit is∞ because the numerator
tends to 4 and the denominator tends to 0+)

2.3.18. 12 (Use the formula (A+B)3 = A3 + 3A2B + 3AB2 +B3)

2.3.20. 3 (use the fact that x3 − 1 = (x− 1)(x2 + x+ 1))

2.3.26. 1 (put under a common denominator t2 + t = t(t+ 1) and cancel out)

2.3.29. 1
2 (put under a common denominator and multiply by the conjugate form)

2.3.32. − 2
x3 (put under a common denominator and expand the numerator out)

2.3.37. 7 (use the squeeze theorem)

2.3.40. 0 (by squeeze theorem, because −1 ≤ sin
(
π
x

)
≤ 1)

2.3.60. Let a = 0 and f(x) = sin
(
1
x

)
(or 1

x ), and g(x) = −f(x).

2.3.61. Let a = 0 and f(x) = sin
(
1
x

)
(or 1

x ), and g(x) = 1
f(x)

2.3.64. Hints: Use the following steps:

(a) Find the coordinates of Q. For this, solve for x and y in the system of
equations: {

(x− 1)2 + y2 =1

x2 + y2 =r2

For this, plug in y2 = r2 − x2 in the first equation and solve for x, then
solve for y in y2 = r2 − x2; remember that you want x > 0 and y > 0,
according to the picture). The answer gives you the coordinates of Q

(b) Now that you know the coordinates of P and Q, find the equation of the
line going through P and Q

(c) Find the x-intercept of that line (set y = 0 and solve for x)
(d) Finally, take the limit as r → 0+ of the answer you found in (c). To do

this, multiply as usual by the conjugate form.

Answers:

(a) Q = ( r
2

2 , r
√

1− r2

4 )

(b) y = 2
r

(√
1− r2

4 − 1

)
x+ r

(c) x− intercept = r2

2

(
1−
√

1− r24

)
(d) 4
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Section 2.4: The precise definition of a limit

2.4.2. δ = 0.4

2.4.4. δ = min
{

1, 16
}

= 1
6 (there are many answers to this question, so don’t

worry if yours is different from mine)

2.4.11. Note: If this problem is too confusing for you, skip it! (it does more harm
than good)

(a) r =
√

1000
π (from now on, let’s call this a)

(b) |r−a| < min
{

5
π(2a+1) , 1

}
= 5

π(2a+1) (for this, first set |r−a| < 1, solve for

r to get a− 1 < r < a+ 1, then |r+a| = r+a < 2a+ 1, so π|r−a||r+a| <
π|r − a|(2a+ 1) < 5, hence |r − a| < 5

π(2a+1)

(c) x = r = radius, a =
√

1000
π , L = 1000, ε = 5, δ = min

{
1, 5

π(2a+1)

}

2.4.19. This is an example of the ‘easy case’ with δ = 3ε
4

2.4.32. This is an example of the ‘complicated case’ with δ = min
{

1, ε19
}

.

To get this δ, notice that if |x−2| < 1, then 1 < x < 3, and so 7 < x2+2x+4 < 19,
so |x2 + 2x+ 4| < 19

2.4.37. This is again an example of the ’complicated case’ with δ = min
{
a
2 , ε
√
a
(

1 + 1√
2

)}
To get this δ, notice that if |x − a| < a

2 , then a
2 < x < 3a

2 , and so in particular
√
x+
√
a >

(
1 + 1√

2

)√
a and then:

|x− a|√
x+
√
a
< |x− a| 1(

1 + 1√
2

)√
a
< ε

which gives:

|x− a| < ε
√
a

(
1 +

1√
2

)

The next two are optional, but good for practice:

2.4.42. δ = 4

√
1
M

2.4.43. δ = eM (where M is negative)
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2.4.44. This is absolutely ridiculous, so feel free to skip it if you want!

(a) Let M > 0. We want to find δ such that if |x−a| < δ, then f(x)+g(x) > M .

However, by replacing M by M + (1− c) in the definition of the limit of
f , there exists δ1 such that if |x− a| < δ1, then f(x) > M + (1− c)

Moreover, by letting ε = 1 in the definition of the limit of g, we know
that there exits δ2 such that if |x− a| < δ2, then |g(x)− c| < 1. In partic-
ular, we get g(x)− c > −1, so g(x) > c− 1.

Hence, if you choose δ = min {δ1, δ2}, then if |x − a| < δ, we have
f(x) + g(x) > M + (1− c) + (c− 1) = M .

(b) Let M > 0. We want to find δ > 0 such that if |x − a| < δ, then
f(x)g(x) > M .

By replacing M by M
(
2
c

)
in the definition of the limit of f , we know

that there exists δ1 such that if |x− a| < δ1, then f(x) > M
(
2
c

)
Moreover, by letting ε = c

2 > 0 in the definition of the limit of g, we
know that there exists δ2 such that if |x− a| < δ2, then |g(x)− c| < c

2 . In
particular, g(x)− c > − c

2 , so g(x) > c− c
2 = c

2 > 0.

Hence, if you choose δ = min {δ1, δ2}, then if |x − a| < δ, we have
f(x)g(x) >

(
M 2

c

) (
c
2

)
= M .

(c) Let M < 0 . We want to find δ > 0 such that if |x − a| < δ, then
f(x)g(x) < M .

By replacing M by M
(
2
c

)
in the definition of the limit of f , we know

that there exists δ1 such that if |x− a| < δ1, then f(x) > M
(
2
c

)
Moreover, by letting ε = − c

2 > 0 in the definition of the limit of g, we
know that there exists δ2 such that if |x − a| < δ2, then |g(x) − c| < − c

2 .
In particular, g(x)− c < − c

2 , so g(x) < c− c
2 = c

2 < 0.

Hence, if you choose δ = min {δ1, δ2}, then if |x − a| < δ, we have
f(x)g(x) <

(
M 2

c

) (
c
2

)
= M . (Note that in fact the > in the first part,

becomes a < here precisely because g(x) < 0!)

Section 2.5: Continuity

2.5.3. −4 (f not defined at −4; neither), −2 (left-hand-side and right-hand-side
limits not equal; continuous from the left), 2 (ditto; continuous from the right), 4
(left-hand-side limit does not exist; continuous from the right)

2.5.11. f(2) = 4 (You get this by solving for f(2) in 3f(2) + f(2)g(2) = 36)

2.5.20. Not continuous because the limit as x→ 1 equals 1
2 (factor out the numer-

ator and denominator), whereas f(1) = 1
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2.5.28. Continuous because it’s a ratio of two continuous functions (and the numer-
ator/denominator are continuous because of composition of continuous functions),
Dom = R

2.5.38. tan−1
(
2
3

)
2.5.44. Yes, you can check that the left-hand-side-limits and the right-hand-side
limits are equal! Plug in values for G,M,R if you want to, for example G = 2,
M = 5, R = 7

2.5.51. Define f(x) = x4 + x− 3, then f(1) = −1 < 0, f(2) = 15 > 0, so by IVT,
there is one number c such that f(c) = 0.

2.5.54. Let f(x) = sin(x)− x2 + x

Then f(1) = sin(1) − 1 + 1 = sin(1) > 0, whereas f(2) = sin(2) − 4 + 2 =
sin(2)− 2 < 0.

Moreover, f is continuous on [1, 2], hence by the Intermediate Value The-
orem there exists one c in (1, 2) such that f(c) = 0, that is, sin(c) = c2 − c

2.5.60. Use the fact that sin(a+ h) = sin(a) cos(h) + sin(h) cos(a)

2.5.69. Define f(t) to be the altitude of the monk on the first day, g(t) to be the
altitude of the monk on the second day, and let h(t) = f(t)− g(t). Then h(0) > 0,
h(12) < 0 (where 0 means 7AM and 12 means 12PM), then by IVT, there is one
number c such that h(c) = 0, i.e. f(c) = g(c)

Section 2.6: Limits at Infinity; Horizontal Asymptotes

2.6.4.

(a) 2
(b) −1
(c) −∞
(d) −∞
(e) ∞
(f) Horizontal asymptotes: y = −1, y = 2; Vertical asymptotes: x = 0, x = 2

2.6.16. 0 (factor out x3 from the numerator and the denominator)
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2.6.26.

lim
x→−∞

x+
√
x2 + 2x = lim

x→−∞
x+
√
x2

√
1 +

2

x

= lim
x→−∞

x+ |x|
√

1 +
2

x

= lim
x→−∞

x− x
√

1 +
2

x

= lim
x→−∞

x

(
1−

√
1 +

2

x

)

= lim
x→−∞

x

(
1−

√
1 +

2

x

) (
1 +

√
1 + 2

x

)
(

1 +
√

1 + 2
x

)
= lim
x→−∞

x

12 −
(√

1 + 2
x

)2
1 +

√
1 + 2

x


= lim
x→−∞

x

 1−
(
1 + 2

x

)
1 +

√
1 + 2

x


= lim
x→−∞

x

 1− 1− 2
x

1 +
√

1 + 2
x


= lim
x→−∞

x

 − 2
x

1 +
√

1 + 2
x


= lim
x→−∞

−2

1 +
√

1 + 2
x

=
−2

1 + 1
=− 1

2.6.38. tan−1(−∞) = −π2 (by continuity of tan−1)

2.6.43. y = 2 (at ±∞), x = 1, x = −2 (factor out the denominator)

2.6.61. 5 (by the squeeze theorem)

Section 2.7: Derivatives and Rates of Change

2.7.6. y = 9x− 15

2.7.12.

(a) A runs with constant speed, while B is slow at first and then speeds up
(b) ≈ 8.5 seconds
(c) 9 seconds
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2.7.17. g′(0) < 0 < g′(4) < g′(2) < g′(−2)

2.7.18. y = 4x− 23 (y + 3 = 4(x− 5) is also acceptable)

2.7.19. f(2) = 3, f ′(2) = 4

2.7.32. f(x) = 4
√
x, a = 16

2.7.36. f(x) = tan(x), a = π
4

2.7.40. f ′(t) = − 1
t2 −1 (show this, using the definition of the derivative) Velocity

= f ′(5) = − 26
25 meters per second, Speed = 26

25 meters/second

2.7.42. ≈ − 5
6 F/min (slope of the red line)

2.7.48.

(a) Rate of bacterias/hour after 5 houts
(b) f ′(10) > f ′(5) (basically, the more bacteria there are, the more can be

produced). But if there’s a limited supply of food, we get that f ′(10) <
f ′(5), i.e. bacterias are dying out because of the limited supply

Section 2.8: The derivative as a function

2.8.3.

(a) II
(b) IV
(c) I
(d) III

2.8.23. f ′(t) = 5− 18t

2.8.40. −1 (not continuous there); 2 (graph has a kink)

2.8.43.

(a) Acceleration
(b) Velocity
(c) Position

2.8.54. Not differentiable at the integers, because not continuous there; f ′(x) = 0
for x not an integer, undefined otherwise. Graph looks like the 0-function, except
it has holes at the integers.

Section 3.1: Derivatives of polynomials and exponential functions

3.1.20. S′(R) = 8πR

3.1.32. y′ = ex+1

3.1.35. y′ = 4x3 + 2ex, so y′(0) = 2, and so the equation of tangent line is y− 2 =

2(x − 0), i.e. y = 2x+ 2 and equation of normal line is y − 2 = − 1
2 (x − 0), i.e.

y = − 1
2x+ 2 (remember that the normal line still goes through (0, 2), but has

slope = the negative reciprocal of the slope of the tangent line)
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3.1.47.

(a) v(t) = s′(t) = 3t2 − 3; a(t) = v′(t) = 6t
(b) a(2) = 12
(c) v(t) = 0 if t = 1 or t = −1, but t > 0 (negative time doesn’t make sense),

so t = 1, and a(1) = 6

3.1.54. First of all y′ = 3
2

√
x and first find a point x where y′(x) = 3 (remember

that two lines are parallel when their slopes are equal, and the slope of y = 1+3x is
3). So you want 3

2

√
x = 3, so

√
x = 2, so x = 4. Now all that you need to find out is

the slope of the tangent line to the curve at 4. The equation is: y − 8 = 3(x− 4)

(because from the above calculation the slope is 3, and the tangent line goes through
(4, f(4)) = (4, 8))

Section 3.2: The product and quotient rules

3.2.15. y′ =
2t(t4−3t2+1)−(t2+2)(4t3−6t)

(t4−3t2+1)2

3.2.33. y′(x) = 2ex + 2xex, so y′(0) = 2, and so the tangent line has equation:

y− 0 = 2(x− 0),i.e y = 2x , and the normal line has equation: y− 0 = − 1
2 (x− 0),

i.e. y = − 1
2x

3.2.41. f ′(x) = 2x(1+x)−x2

(1+x)2 = x2+2x
x2+2x+1 , so f ′′(x) = (2x+2)(x2+2x+1)−(x2+2x)(2x+2)

(x2+2x+1)2 ,

and so f ′′(1) = (2+2)(1+2+1)−(1+2)(2+2)
(1+2+1)2 = (4)(4)−(3)(4)

(4)(4) = 16−12
16 = 4

16 = = 1
4

3.2.49.

(a) u′(1) = f ′(1)g(1) + f(1)g′(1) = (2)(1) + (2)(−1) = 0

(b) v′(5) = f ′(5)g(5)−f(5)g′(5)
(g(5))2

=
(− 1

3 )(2)−(3)( 2
3 )

4 =
− 2

3−2
4 = − 8

12 = − 2
3

3.2.57. (9200)(30593) + (961400)(1400) = 1,627,000

Section 3.3: Derivatives of trigonometric functions

3.3.37. We have sin(θ) = x
10 , so x = 10 sin(θ), so x′(θ) = 10 cos(θ), and x′

(
π
3

)
=

10 cos
(
π
3

)
= 10

2 = 5

3.3.39. 3 (multiply the fraction by 3
3 and use the fact that limx→0

sin(3x)
3x = 1)

3.3.40. 4
6 = 2

3 (multiply the numerator by 4
4 and the denominator by 6

6 and use

the facts that limx→0
sin(4x)

4x = 1 and limx→0
sin(6x)

6x = 1)

3.3.55. The problem is to calculate:

lim
θ→0+

=
s

d

First of all, let’s call the radius of the circle r.

Now, let’s divide this into three simple sub-problems:
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1A/Math 1A Summer/Solution Bank/Arclength.png

(1) Calculate s
But this is not very hard! Either you know about the formula for the

length of an arc, or you can easily derive it! Namely, if an angle of 2π
radians corresponds to a length of 2πr (i.e. the circumference of a circle),
then an angle of θ radians corresponds to a length of s.
Now, because the length of an arc is proportional to the angle, we have the
following equality:

s

θ
=

2πr

2π
= r

So s = θr

Notice that the use of radians makes this calculation particularly simple!

(2) Calculate d
This is a bit harder than the above step, but actually not that bad!

Label the triangle in the figure ABC, and let H be the midpoint of BC.
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Then, the triangle AHB is right in A, and we can use our regular definition
of sin to find a relationship between r and d, namely:

sin(∠BAH) =
BH

AB
But you can easily check that ∠BAH = θ

2 , that BH = d
2 (because H is

the midpoint of BC), and that AB = r! Hence, we get:

sin(
θ

2
) =

d
2

r

That is, d = 2rsin( θ2 ) .

(3) Compute the limit

The last thing we need to do is to calculate the required limit! But this

is easy, since we know the values of s and d in terms of r:

lim
θ→0+

s

d
= lim

θ→0+

rθ

2r sin( θ2)
= lim

θ→0+

θ

2 sin( θ2)
= lim

θ→0+

θ
2

sin( θ2)

Finally, let t = θ
2 and notice that, as θ → 0+, t → 0+, then, our limit

becomes:

lim
θ→0+

s

d
= lim
t→0+

t

sin(t)
= lim
t→0+

1
sin(t)
t

=
limt→0+ 1

limt→0+
sin(t)
t

=
1

1
= 1

And again, the next-to-last step is justified because both limits (numerator
and denominator) exist and the limit of the denominator is nonzero!

Hence, we get:

limθ→0+
s
d = 1

Section 3.4: The Chain Rule

3.4.12. f ′(t) = cos (et) et + esin(t) cos(t)

3.4.15. y′ = e−kx − kxe−kx

3.4.39. f ′(t) = sec2(et) + etan(t) sec2(t)

3.4.45. y′ = − sin(
√

sin(tan(πx))) 1

2
√

sin(tan(πx))
cos(tan(πx)) sec2(πx)π

3.4.49. y′ = αeαx sin(βx)+eαxβ cos(βx); y′′ = eαx((α2−β2) sin(βx)+2αβ cos(βx))

3.4.63.

(a) h′(1) = f ′(g(1))g′(1) = f ′(2)g′(1) = 5× 6 = 30
(b) H ′(1) = g′(f(1))f ′(1) = g′(3)f ′(1) = 9× 4 = 36
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3.4.66.

(a) h′(2) = f ′(f(2))f ′(2) = f ′(1)f ′(2) = − 1
2 × 1 = − 1

2
(b) g′(2) = f ′(4)4 = 1× 4 = 4

3.4.67. g′(3) = 1

2
√
f(3)

f ′(3) = 1
2
√
2

(−2
3

)
= −1

3
√
2

(which you can rewrite as −
√
2
6 )

3.4.68.

(a) F ′(x) = f ′(xα)αxα−1

(b) G′(x) = α (f(x))
α−1

f ′(x)

3.4.72.

(a) f ′(x) = g(x2) + xg′(x2)2x = g(x2) + 2x2g′(x2)
(b) f ′′(x) = g′(x2)(2x) + 4xg′(x2) + 2x2g′′(x2)2x = 6xg′(x2) + 4x3g′′(x2)

3.4.80.

(a) v(t) = s′(t) = −Aω sin(ωt+ δ)
(b) We want v(t) = 0, so ωt+ δ = πm, so t = πm−δ

ω (m is an integer)

3.4.85. a(t) = dv
dt = dv

ds
ds
dt = dv

dsv(t)

3.4.86.

(a) dV
dr is the rate of change of V as the radius r changes, and dV

dt is the rate
of change of V as the time t changes

(b) V (t) = 4
3πr

3, so dV
dt = dV

dr
dr
dt = 4

3π3r2 drdt = 4πr2 drdt

3.4.92.

(f(x)[g(x)]−1)′ = f ′(x)[g(x)]−1 + f(x)(−1)[g(x)]−2g′(x)

=f ′(x)g(x)[g(x)]−2 − f(x)g′(x)[g(x)]−2

=
f ′(x)g(x)− f(x)g′(x)

(g(x))2

Section 3.5: Implicit differentiation

3.5.3. y′ = − y
2

x2

3.5.19. y′ = ey sin(x)+cos(xy)y
ey cos(x)−x cos(xy)

3.5.29. y = x+ 1
2

3.5.30. (y − 1) =
√

3(x+ 3
√

3), or y =
√

3x+ 10

3.5.32. y = −2
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3.5.44. First of all, by implicit differentiation:

2x

a2
+

2yy′

b2
=0

y′
(

2y

b2

)
=− 2x

a2

y′ =− b2

a2
2x

2y

y′ =− b2

a2
x

y

It follows that the tangent line to the ellipse at (x0, y0) has slope − b2

a2
x0

y0
, and

since it goes through (x0, y0), its equation is:

y − y0 =

(
− b

2

a2
x0
y0

)
(x− x0)

And the rest of the problem is just a little algebra!

First of all, by multiplying both sides by a2y0, we get:

(y − y0)(a2y0) = −b2x0(x− x0)

Expanding out, we get:

ya2y0 − a2(y0)2 = −b2x0x+ b2(x0)2

Now rearranging, we have:

ya2y0 + b2x0x = a2(y0)2 + b2(x0)2

Now dividing both sides by a2, we get:

yy0 +
b2

a2
x0x = (y0)2 +

b2

a2
(x0)2

And dividing both sides by b2, we get:

yy0
b2

+
x0x

a2
=

(y0)2

b2
+

(x0)2

a2

But now, since (x0, y0) is on the ellipse, (y0)
2

b2 + (x0)
2

a2 = 1, we get:

yy0
b2

+
x0x

a2
= 1

Whence,

x0x

a2
+
y0y

b2
= 1

Which is what we want!
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3.5.45. Slope:

2x

a2
− 2yy′

b2
=0

y′
(
−2y

b2

)
=− 2x

a2

y′ =
b2

a2
2x

2y

y′ =
b2

a2
x

y

Equation:

At (x0, y0), the slope is b2

a2
x0

y0
, so the equation of the tangent line at (x0, y0) is:

y − y0 =

(
b2

a2
x0
y0

)
(x− x0)

Simplification:

First of all, by multiplying both sides by a2y0, we get:

(y − y0)(a2y0) = b2x0(x− x0)

Expanding out, we get:

ya2y0 − a2(y0)2 = b2x0x− b2(x0)2

Now rearranging, we have:

ya2y0 − b2x0x = a2(y0)2 − b2(x0)2

Now dividing both sides by a2, we get:

yy0 −
b2

a2
x0x = (y0)2 − b2

a2
(x0)2

And dividing both sides by b2, we get:

yy0
b2
− x0x

a2
=

(y0)2

b2
− (x0)2

a2

But now, since (x0, y0) is on the hyperbola, (x0)
2

a2 −
(y0)

2

b2 = 1, so (y0)
2

b2 −
(x0)

2

a2 = −1,
and we get:

yy0
b2
− x0x

a2
= −1

Whence,

x0x

a2
− y0y

b2
= 1
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3.5.46. Slope:

1

2
√
x

+ y′
(

1

2
√
y

)
=0

y′
(

1

2
√
y

)
=− 1

2
√
x

y′ =−
1

2
√
x

1
2
√
y

y′ =−
2
√
y

2
√
x

y′ =−
√
y
√
x

Equation: At (x0, y0), the slope is −
√
y0√
x0

, and so the equation of the tangent line

at (x0, y0) is:

y − y0 = −
√
y0√
x0

(x− x0)

y−intercept:
To find the y−intercept, set x = 0 and solve for y:

y − y0 =−
√
y0√
x0

(0− x0)

y − y0 =−
√
y0√
x0

(−x0)

y − y0 =
√
y0
√
x0

y =y0 +
√
y0
√
x0

x−intercept:
To find the x−intercept, set y = 0 and solve for x:

0− y0 =−
√
y0√
x0

(x− x0)

−y0 =−
√
y0√
x0

(x− x0)

x− x0 =−
√
x0√
y0

(−y0)

x =x0 +
√
x0
√
y0

Sum:
The sum of the y− and x− intercepts is:

(y0 +
√
y0
√
x0) + (x0 +

√
x0
√
y0) = x0 + 2

√
x0
√
y0 + y0

But the trick is that:
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x0 + 2
√
x0
√
y0 + y0 = (

√
x0)2 + 2

√
x0
√
y0 + (

√
y0)2 = (

√
x0 +

√
y0)2

But since (x0, y0) is on the curve
√
x+
√
y =
√
c, we get

√
x0 +

√
y0 =

√
c.

And so, finally we get that the sum of the x− and y− intercepts is:

x0 + 2
√
x0
√
y0 + y0 = (

√
x0 +

√
y0)2 = (

√
c)2 = c

3.5.51. 2√
1−(2x+1)2

(or 1√
−(x2+x)

, either answer is fine)

3.5.53. G′(x) = − x√
1−x2

arccos(x)− 1

3.5.54.
1− x√

1+x2

1+(x−
√
1+x2)2

= 1
2(1+x2)

Note: This is a ridiculous simplification, and don’t worry about this too much,
but here are the steps:

(1) First put everything under a common denominator

(2) Then expand out the 1 + (x−
√

1 + x2)2 in the denominator, and simplify
and factor out the 2

(3) Then multiply the numerator and the denominator by
√

1 + x2 +x (conju-
gate form)

(4) Then expand out the (
√

1 + x2 +x)(1 +x2−x
√

1 + x2)-part of the denom-

inator to get
√

1 + x2

3.5.63. Look up the handout ‘Proof of the derivative of arccos’ on my website!

3.5.77.

(a) f(f−1(x)) = x, let y = f−1(x), then f(y) = x, so f ′(y)y′ = 1, so y′ =
1

f(y) = 1
f(f−1(x))

(b) 3
2

3.5.80. Let’s denote the point of intersection between the ellipse and the tangent
line by (a, b).

Then, using implicit differentiation, we can show that the slope of the tangent
line is

− a

4b
Now, let K be the altitude of the lamp, our goal is to find K.

Notice that the same tangent line goes through the points (−5, 0) and (3,K), so
by the slope formula, we have:

Slope =
K − 0

3− (−5)
=
K

8

In particular, since the slope is also equal to − a
4b , we have:
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K

8
= − a

4b
So

K = −8
a

4b
= −2a

b

So all we really need to do to solve this problem is to find − 2a
b !

Now we also know that the tangent line goes through the points (−5, 0) and
(a, b), so its slope is b−0

a−(−5) = b
a+5 , but again we know that its slope is also − a

4b ,

and so we get:

b

a+ 5
= − a

4b

So cross-multiplying, we have 4b2 = −(a)(a+ 5), that is a2 + 4b2 = −5a.

HOWEVER, We also know that (a, b) is on the ellipse, so it satisfies the equa-
tion of the ellipse, and so a2 + 4b2 = 5, whence we get −5a = 5, and so a = −1.

And plugging a = −1 into a2 + 4(b)2 = 5 and assuming b > 0, we get b = 1, and
so K = − 2a

b = 2
1 = 2, and we’re done!

Section 3.6: Derivatives of logarithmic functions

3.6.11. g′(x) = 1
x
√
x2−1

(√
x2 − 1 + x2

√
x2−1

)
3.6.21. y′ = 2 log10(

√
x) + 2x 1

ln(10)
√
x
× 1

2
√
x

= 2 log10(
√
x) + 1

ln(10)

3.6.41. y′ =
√

x−1
x4+1

(
1

2(x−1) + 2x3

x4+1

)
3.6.44. y′ = xcos(x)

(
− sin(x) ln(x) + cos(x)

x

)
Section 3.7: Rates of change in the natural and social sciences

3.7.4.

(a) f ′(t) = e−
t
2 − t

2e
− t2 = e−

t
2

(
1− t

2

)
(b) f ′(3) = e−

3
2

(
− 1

2

)
(c) t = 2

(d) When t < 2

(e) f(2)− f(0) + f(2)− f(8) = 2e−1 − 0 + 2e−1 − 8e−4 = 4e−1 − 8e−4

(f) The particle is moving to the right between t = 0 and t = 2, and then to
the left from t = 2 to t = 8.
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(g) f ′′(t) = − 1
2e
− t2
(
1− t

2

)
+ e−

t
2

(
− 1

2

)
= e−

t
2

(
− 1

2 + t
4 −

1
2

)
= e−

t
2

(
t
4 − 1

)
;

f ′′(3) = e−
3
2

(
− 1

4

)
(h) Use a calculator
(i) Speeding up when f ′′(t) > 0 and f ′(t) > 0 or when f ′′(t) < 0 and f ′(t) < 0.

But solving those equations reveals that none of the two situations can
happen! Hence the particle is constantly slowing down!

3.7.8.

(a) First solve for v(t) = 0, where v(t) = ds
dt = 80 − 32t, you get t = 80

32 = 5
2 .

So the maximum height s∗ is s∗ = s( 5
2 ) = 200− 100 = 100

(b) To find the time t when the ball is 96ft above the ground, we need to solve

the equation s(t) = 96, and you get t = 2, 3 , whence v(2) = 80− 32 · 2 = 16 fts

and v(3) = 80− 32 · 3 = −16 fts

3.7.17. f ′(x) = 6x = linear density at x. f ′(1) = 6, f ′(2) = 12, f ′(3) = 18. The
density is highest at 3 and lowest at 1.

3.7.26. First of all, we know two things, namely f(0) = 20 and f ′(0) = 12.
But by the chain rule:

f ′(t) = −0.7be−0.7t
−a

(1 + be−0.7t)2
=

0.7abe−0.7t

(1 + be−0.7t)2

So from f(0) = 20, we get:

a

1 + b
= 20

And from f ′(0) = 12, we get:

0.7ab

(1 + b)2
= 12

From a
1+b = 20, we get a = 20(1+b), and plugging this into the second equation,

we get:

(0.7)(20)(1 + b)b

(1 + b)2
=12

14b

1 + b
=12

14b =12(1 + b)

14b =12 + 12b

2b =12

b = 6

And so a = 20(1 + 6) = 20(7) = 140.

Therefore, we have a = 140 and b = 6 .
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Finally, to find out what happens in the long run, we need to calculate limt→∞ f(t).

But notice that limt→∞ e−0.7t = 0, and so limt→∞ f(t) = a
1+0 = a = 140 .

3.7.31.

(a) C ′(x) = 12− 0.2x+ 0.0015x2

(b) C ′(200) = 32; The cost of producing one more yard of a fabric once 200
yards have been produced

(c) C(201)− C(200) = 32.2005, which is pretty close to C ′(200)

Section 3.8: Exponential growth and decay

3.8.6.

(a) Hint: Solve the differential equation y′ = ky with y(0) = 361 and y(10) =
439 and find y(50)

(b) Hint: Solve the differential equation y′ = ky with y(0) = 439 and y(20) =
683 and find y(39) and y(49)

3.8.9.

(a) y(t) = 100eln(
1
2 )

t
30 = 100

(
1
2

) t
30

(b) y(100) = 100
(
1
2

) 100
30 ≈ 9.92

(c) t = 30
ln( 1

100 )

ln( 1
2 )
≈ 199.3

3.8.11. The problem asks about radioactive decay, so as usual, we have y′ = ky,
so y(t) = Cekt. Now we’re given two things: First of all, the half-life is t = 5730

years, so y(5730) = y(0)
2 = C

2 . Moreover, we know that at a certain time t∗ (we
want to find t∗), y(t∗) = 0.74y(0) = 0.74C. Now even though we don’t know
what C is, we can still solve for t∗.

The following calculation helps us find k:

y(5730) =
C

2

Ce5730k =
C

2

e5730k =
1

2

5730k = ln(
1

2
)

k =
ln( 1

2 )

5730

Whence y(t) = Ce
ln( 1

2
)

5730 t = C( 1
2 )

t
5730

Now we’re given that y(t∗) = 0.74C, and the following calculation helps us solve
for t∗:
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y(t∗) =0.74C

C(
1

2
)
t∗

5730 =0.74C

(
1

2
)
t∗

5730 =0.74

t∗

5730
ln(

1

2
) = ln(0.74)

t∗ =5730
ln(0.74)

ln( 1
2 )

t∗ ≈2489

So t∗ ≈ 2489 years (notice how we didn’t even need info about C to figure this

out!)

3.8.19.

(a) (i) 3000
(
1 + 0.05

1

)(1)(5) ≈ 3828

(ii) 3000
(
1 + 0.05

2

)(2)(5) ≈ 3840

(iii) 3000
(
1 + 0.05

12

)(12)(5) ≈ 3850

(iv) 3000
(
1 + 0.05

52

)(52)(5) ≈ 3851.61

(v) 3000
(
1 + 0.05

365

)(365)(5) ≈ 3852.01

(vi) 3000e0.05(5) ≈ 3852.08
(b) A′ = 0.05A, A(0) = 3000

Section 3.9: Related rates

3.9.5. dh
dt = 3

25π (Use V = πr2h)

3.9.13.

1) First of all, let’s draw a picture of the situation, and remember to only label
things that are constant!

Here, x is the distance between the street light and the man, and y is
the distance between the man and the shadow. Also, let z = x + y, the
total length of the shadow.

2) We want to figure out z′ when x = 40.
3) Looking at the picture, we can use the law of similar triangles to conclude:

y

x+ y
=

6

15

That is:

y =
2

5
(x+ y)

3

5
y =

2

5
x

y =
2

3
x
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1A/Math 1A Summer/Solution Bank/Street Light.png

It follows that:

z = x+ y = x+
2

3
x =

5

3
x

4) Hence z′ = 5
3x
′

5) However, we know that x′ = 5 (because the man is walking with a speed
of 5 ft/s).
Hence we get z′ = 5

3 (5) = 25
3

So z′ = 25
3 .

Note: We did not need the fact that x = 40 !

3.9.15. dD
dt = 65mph (use the pythagorean theorem to conclude D2 = x2 + y2)

3.9.27. dh
dt = 6

5π (use the fact that V = π
3 r

2h = π
12h

3 because h = r
2 )

3.9.40.

1) Again, draw a picture of the situation:
Here, x is the distance between P and the beam of light.
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1A/Math 1A Summer/Solution Bank/Lighthouse.png

2) We want to figure out dx
dt when x = 1

3) Looking at the picture, because we have info about the derivative of θ (see
below), we use the definition of tan(θ):

tan(θ) =
x

3
So x = 3 tan(θ)

4) Hence dx
dt = 3 sec2(θ)dθdt

5) First of all, we actually know what dθ
dt is! Since the lighthouse makes 4

revolutions per minute and one revolution corresponds to 2π, we know that
dθ
dt = −8π (think of speed = distance/time, and here time = 1 minute, and
’distance’ = 8π, also you put a minus-sign since x is decreasing!).

Moreover, by drawing the exact same picture as above, except with
x = 1, we can calculate sec2(θ), namely:

sec(θ) =
hypothenuse

adjacent
=

√
10

3

And the
√

10 we get from the Pythagorean theorem!
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It follows that sec2(θ) =
(√

10
3

)2
= 10

9 .

Now we got all of the info we need to conclude the problem:

dx

dt
=3 sec2(θ)

dθ

dt
dx

dt
=3(

10

9
)(−8π)

dx

dt
=− 240π

9
dx

dt
=− 80π

3

Whence dx
dt = − 80π

3 rad/min

3.9.45.

1) As usual, let’s draw a picture of the situation:

1A/Math 1A Summer/Solution Bank/Runners.png

Here, x is the distance between the runner and the friend, and s is the
length of the arc corresponding to θ
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2) We want to figure out dx
dt when x = 200

3) Looking at the picture, it looks like we should use the law of cosines (because
we have info about θ and about 2 of the 3 sides of the triangle)

x2 = 1002 + 2002 − 2(100)(200) cos(θ)

In other words:

x2 = 50000− 40000 cos(θ)

4) Hence 2xdxdt = 40000 sin(θ)dθdt

5) First of all x = 200 in this case. Also, by definition of a radian, we know
that s = 100θ, whence ds

dt = 100dθdt . But we’re given that ds
dt = 7m/s, so

dθ
dt = 7

100 = 0.07.

So all we got to figure out is sin(θ)
For this, draw the same picture as above, except you let x = 200. And

in this case, we use the law of cosines again:

2002 = 1002 + 2002 − 2(100)(200) cos(θ)

−10000 = −40000 cos(θ)

cos(θ) =
1

4
Now you can use either the triangle method to figure out what sin(θ)

is (all you gotta do is calculate sin(cos−1( 1
4 ), or, even easier, notice that

sin(θ) =
√

1− cos2(θ) (this works because sin(θ) > 0 because we assume

that θ is between 0 and π
2 . Hence sin(θ) =

√
1− 1

16 =
√

15
16 =

√
15
4 .

PHEW!!! Now we have all the info we need to solve the problem:

2x
dx

dt
=40000 sin(θ)

dθ

dt

2(200)
dx

dt
=40000(

√
15

4
)(0.07)

400
dx

dt
=700

√
15

dx

dt
=

7

4

√
15

Hence dx
dt = 7

4

√
15

3.9.46. As is usual for related rates problems, let’s draw a picture:
Let θ be the angle between the hour hand and the minute hand. Now, what we

want to calculate is D′(θ), where the ′ indicates differentiation with respect to the
time variable.
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1A/Math 1A Summer/Solution Bank/Clock.png

How can we relate D(θ) with what we know? This is easy! We know an angle θ
and the lengths of AB and AC in the picture, so let’s just use the law of cosines.
We get:

BC2 = AC2 +AB2 − 2 ·AC ·AB · cos(θ)

That is:

D(θ)2 = 82 + 42 − 2 · 8 · 4 · cos(θ)

Which you can write as:

D(θ)2 = 80− 64 cos(θ)

Now differentiate with respect to time!
We get:

2D(θ)D′(θ) = 64 sin(θ)
dθ

dt
And now, all we need to do is to plug in everything we know!
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First of all θ = 2π
12 = π

6 (basically, the whole circle corresponds to 2π, and so 1
12

of the circle corresponds to 2π
12 ).

In particular, sin(θ) = sin(π6 ) = 1
2 .

Now, for d(θ), we use the law of cosines again, this time with the value θ = π
6 :

D(
π

6
)2 = 80− 64 · cos(

pi

6
) = 80− 64

√
3

2
= 80− 32

√
3

So, taking square roots, we get d(π6 ) =
√

80− 32
√

3 = 4
√

5− 2
√

3 mm .

Finally, we need to compute Dθ
dt . But think about it! In 12 hours, θ = 2π, so

the speed of θ should be 2π
12 = π

6 = − 11π
6 rad/h (notice that θ is decreasing, so we

wanted a negative answer!)
Finally, we have all our information to get our final answer:

2D(θ)D′(θ) = 64 sin(θ)
Dθ

dt

2 · (4
√

5− 2
√

3) ·D′
(π

6

)
= 64 · 1

2
· −11π

6

2 · (4
√

5− 2
√

3) ·D′
(π

6

)
= 32 · −11π

6

D′
(π

6

)
= 16 ·

−11π
6

4
√

5− 2
√

3

D′
(π

6

)
= 4 ·

−11π
6√

5− 2
√

3

D′
(π

6

)
= − 22π

3
√

5− 2
√

3

D′
(π

6

)
≈ −18.55mm/h

So our final answer is D′
(
π
6

)
= − 22π

3
√

5−2
√
3

mm/h ≈ −18.55mm/h

Section 3.10: Linear approximations and differentials

3.10.2. L(x) = 1
2 +

√
3
2

(
x− π

6

)
3.10.11.

(a) dy = (2x sin(2x) + 2x2 cos(2x))dx

(b) dy = 1√
1+t2

(
t√

1+t2

)
dt = t

1+t2 dt

3.10.15.

(a) dy = 1
10e

x
10 dx

(b) dy = 1
10 (0.1) = 0.01

3.10.21. ∆(y) = y(5)− y(4) = 2
5 −

2
4 = − 1

10 = −0.1

dy = − 2
42 (1) = − 1

8 = −0.125
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3.10.35. l = 2πr = 84, so r = 84
2π = 42

π . We know dl = 0.5, so 2πdr = 0.5, so

dr = 0.5
2π = 1

4π

(a) S = 4πr2, so dS = 8πrdr = 8π 42
π

1
4π = 84

π . Also the relative error is
dS
S = 8πrdr

4πr2 = 2dr
r = 1

2π ×
π
42 = 1

84 ≈ 0.012

(b) V = 4
3πr

3, so dV = 4πr2dr = 4π 422

π2 × 1
4π = 1764

π2 ≈ 179. Also the relative

error is dV
V = 4πr2dr

4
3πr

3 = 3dr
r =

3
4π
42
π

= 3
168 = 1

56 ≈ 0.018

3.10.40. dF = 4kR3dR, so:

dF

F
=

4kR3dR

F
=

4kR3dR

F
=

4kR3dR

kR4
= 4

dR

R
And when dR

R = 0.05, dF
F = 4(0.05) = 0.2

3.10.43.

(a) L(x) = f(1) + f ′(1)(x− 1) = 5− 1(x− 1) = 6− x
f(0.9) ≈ L(0.9) = 5− (0.9− 1) = 5.1
f(1.1) ≈ L(1.1) = 5− (1.1− 1) = 4.9

(b) Notice that (f ′)′(x) < 0, hence f ′′(x) < 0, so f is concave down (Think for
example

√
x, we’ll discuss that more in section 4.3), which means that the

linear approximations will be overestimates (in other words, the tangent
line to f at 1 will be above the graph of f ; again, think of the case

√
x)

Section 3.11: Hyperbolic functions

3.11.9.

cosh(x) + sinh(x) =
ex + e−x

2
+
ex − e−x

2
=
ex + e−x + ex − e−x

2
=

2ex

2
= ex

3.11.11. Just expand out the right-hand-side and use the fact that sinh(x) =
ex−e−x

2 , cosh(y) = ey−e−y
2 , cosh(x) = ex+e−x

2 and sinh(y) = ey−e−y
2

3.11.15.

2 sinh(x) cosh(x) = 2
ex − e−x

2

ex + e−x

2
=

2

4
(ex−e−x)(ex+e−x) =

1

2
(e2x−e−2x) =

e2x − e−2x

2
= sinh(2x)

3.11.21. sinh(x) = 4
3 (use the fact that cosh2(x)− sinh2(x) = 1 and the fact that

sinh(x) > 0 when x > 0).

Then you get tanh(x) = sinh(x)
cosh(x) =

4
3
5
3

= 4
5 , sech(x) = 1

cosh(x) = 3
5 , etc.

3.11.23(a). 1 (use tanh(x) = ex−e−x
ex+e−x and factor out ex from the numerator and

the denominator)

3.11.26. This is very similar to example 3 on page 257. However, there is a subtle
point involved, check out the document ’Subtle point in 3.11.26’ for more info!

3.11.29(a)(b). This is also very similar to example 4 on page 257. For (a), use the
fact that cosh(cosh−1(x))2 − sinh(cosh−1(x))2 = 1 and cosh(cosh−1(x)) = x. Also,
you’ll need to fact that sinh(cosh−1(x)) ≥ 0 (and this is because cosh−1(x) ≥ 0
by definition, and sinh(x) ≥ 0 if x ≥ 0). (b) is even easier, use the fact that:
1− tanh(tanh−1(x))2 = sech(tanh−1(x))2 and tanh(tanh−1(x)) = x.
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3.11.31. f ′(x) = sinh(x) + x cosh(x)− sinh(x) = x cosh(x)

3.11.47. y′ = 1
1+tanh2(x)

(sech2(x)) = sech2(x)
1+tanh2(x)

Chapter 3 − Review

TRUE−FALSE.

(1) TRUE
(2) FALSE
(3) TRUE
(4) TRUE

(5) FALSE ( f
′(
√
x)

2
√
x

)

(6) FALSE (e2 is a constant, so 0)
(7) FALSE (y′ = ln(10)10x, exponential rule)
(8) FALSE (ln 10 is a constant, so 0)
(9) FALSE (2 tan(x) sec2(x))

(10) FALSE ((2x + 1) x2+x
|x2+x| ; Write

∣∣x2 + x
∣∣ =

√
(x2 + x)2 and use the chain

rule)
(11) TRUE
(12) TRUE (f is a polynomial of degree 30, so its 31st derivative is 0)
(13) TRUE (By the quotient rule and (11))
(14) FALSE (y − 4 = −4(x+ 2); it’s not even the equation of a line!)
(15) TRUE (= g′(2) = 5(2)4 = 80)

3.R.68.

(a) sin(2x) = 2 sin(x) cos(x)
(b) cos(x+ a) = cos(x) cos(a)− sin(x) sin(a) (The important thing here is that

you differentiate with respect to x, leaving a constant)

3.R.87.

v(t) = s′(t) = −Ace−ct cos(ωt+δ)−Aωe−ct sin(ωt+δ) = −Ae−ct (c cos(ωt+ δ) + ω sin(ωt+ δ))

a(t) = v′(t) = Ace−ct (c cos(ωt+ δ) + ω sin(ωt+ δ))−Ae−ct
(
−cω sin(ωt+ δ) + ω2 cos(ωt+ δ)

)
3.R.94. y(t) = 100× 2−

t
5.24

(a) y(20) = 100× 2
−20
5.24 ≈ 7.1 mg

(b) t = 5.24 ln(100)
ln(2) ≈ 34.81 years

3.R.99.

(1) D2 = x2+y2 (Typical Pythagorean theorem problem; Draw a right triangle
in the shape of an L, and let x be the bottom side, y be the left-hand-side,
and D be the hypothenus)

(2) 2D dD
dt = 2xdxdt + 2y dydt

(3) x = 3 × 15 = 45 (velocity × time), y = 45 + 5 × 3 = 60 (initial height +

velocity × time), dx
dt = 15, dy

dt = 5, and D =
√
x2 + y2 =

√
452 + 602 =√

5625 = 75 which gives:

dD

dt
=

45× 15 + 60× 5

75
= 13
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3.R.101.

(1) tan(θ) = 400
x (Typical trigonometry-problem. Draw another triangle in the

shape of an L, let 400 be the left-hand-side, x be the bottom, and the angle
on the right be θ)

(2) sec2(θ)dθdt = − 400
x2

dx
dt

(3) x = 400
√

3 (redraw the same triangle, but this time with θ = π
6 ), dθ

dt =
−0.25, and θ = π

6 , which gives:

dx

dt
= 400

3.R.105. The area of the window is given by y = x2 + π
2

(
x
2

)2
=
(
1 + π

8

)
x2.

Then:

dy =
(

1 +
π

8

)
2xdx =

(
1 +

π

8

)
(120)(0.1) = 12 +

3π

2
≈ 16.71

3.R.111. f ′(2x) = x2

2 , so f ′(x) =
( x2 )

2

2 = x2

8

Section 4.1: Maximum and Minimum Values

4.1.6.

- Absolute maximum: Does not exist (NOT 5)
- Absolute minimum: f(4) = 1
- Local minimum: f(2) = 2, f(4) = 1
- Local maximum: f(3) = 4, f(6) = 3

4.1.38. 0 (g′ does not exist), − 1
2 (makes g′(c) = 0)

4.1.39. 0 (F ′ does not exist), 4, 87 (makes F ′(c) = 0)

4.1.41. f ′(θ) = −2 sin(θ) + 2 sin(θ) cos(θ), which gives θ = πm or θ = 2πm, which

can be just written as θ = πm (m is an integer)

4.1.43. f ′(x) = 2xe−3x − 3x2e−3x, which gives x = 0 and x = 2
3

4.1.51. f ′(x) = 12x3 − 12x2 − 24x = 12x(x2 − x− 2) = 12x(x− 2)(x+ 1), which
gives x = −1, 0, 2. Candidates: f(−2) = 33, f(3) = 28 (endpoints), f(0) = 1,

f(−1) = −4, f(2) = −31. Absolute maximum: f(−2) = 33 , Absolute minimum:

f(2) = −31

4.1.57.

1) Evaluate f at the endpoints 0 and π
2

f(0) = 2 + 0 = 2, f(π2 ) = 0 + 0 = 0
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2) Find the critical numbers of f

f ′(t) = −2 sin(t) + 2 cos(2t)

f ′(t) = 0

−2 sin(t) + 2 cos(2t) = 0

sin(t) = cos(2t)

Here comes the tricky part! This seems impossible to solve, but ideally
we’d like to write the right-hand-side just in terms of sin(x) in order to
have a shot at solving this!

Start with cos(2t) = cos2(t)− sin2(t) (the double-angle formula for cos).
Moreover cos2(t) = 1− sin2(t) (because cos2(t) + sin2(t) = 1)
So we get cos(2t) = 1− sin2(t)− sin2(t) = 1− 2 sin2(t). So our original

equation becomes:

sin(t) = 1− 2 sin2(t)

which you can rewrite as 2 sin2(t) + sin(t)− 1 = 0.

This again looks impossible to solve, but notice that this is just a qua-
dratic equation in sin(t)! So let X = sin(t), then we get:

2X2 +X − 1 = 0

And using the quadratic formula (or your factoring skills), we get:

(2X − 1)(X + 1) = 0

So X = 1
2 or X = −1. That is, sin(t) = 1

2 or sin(t) = −1.
HOWEVER, remember that we’re only focusing on [0, π2 ], so in particular

sin(t) = 1
2 has only one solution in [0, π2 ], namely t = π

6 , and sin(t) = −1
has NO solution in [0, π2 ].

It follows that the only critical number of f in [0, π2 ] is t = π
6 (there are

no numbers where f is not differentiable, so in fact those are all the critical
numbers).

And we get f(π6 ) =
√

3 +
√
3
2 = 3

√
3

2
3) Compare all the candidates you have:

Our candidates are f(0) = 2, f(π2 ) = 0 and f(π6 ) = 3
√
3

2 ≈ 2.59.

Hence, the absolute minimum of f on [0, π2 ] is f(π2 ) = 0 (the smallest

candidate), and the absolute maximum of f on [0, π2 ] is f(π6 ) = 3
√
3

2 (the

largest candidate)
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Section 4.2: The Mean Value Theorem

4.2.6. f(0) = f(π) = 0, but f ′(x) = sec2(x) > 0. This does not contradict Rolle’s
Theorem because f is not continuous on [0, π] (it is discontinuous at π

2 .

4.2.11. ln(x) is continuous on [1, 4], differentiable on (1, 4); c = 3
ln(4)

4.2.17. Let f(x) = 2x− 1− sin(x)

At least one root: f(0) = −1 < 0 and f(π) = 2π− 1 > 0 and f is continuous,
so by the Intermediate Value Theorem (IVT) the equation has at least one
root.

At most one root: Suppose there are two roots a and b. Then f(a) = f(b) = 0,
so by Rolle’s Theorem there is at least one c ∈ (a, b) such that f ′(c) = 0. But
f ′(c) = 2−cos(c) 6= 0, which is a contradiction, and hence the equation has at most
one root.

4.2.18. Let f(x) = x3 + ex

At least one root: f(−1) = −1 + e−1 < 0 and f(0) = 0 + e0 = 1 > 0 and f
is continuous, so by the Intermediate Value Theorem (IVT) the equation has
at least one root.

At most one root: Suppose there are two roots a and b. Then f(a) = f(b) = 0,
so by Rolle’s Theorem there is at least one c ∈ (a, b) such that f ′(c) = 0. But
f ′(c) = 3c2 + ec ≥ ec > 0, so f ′(c) 6= 0, which is a contradiction, and hence the
equation has at most one root.

4.2.23. By the MVT, f(4)−f(1)
4−1 = f ′(c) for some c in (1, 4). Solving for f(4) and

using f(1) = 10, we get f(4) = 3f ′(c) + 10 ≥ 6 + 10 = 16.

4.2.29. This is equivalent to showing:∣∣∣∣ sin(a)− sin(b)

a− b

∣∣∣∣ ≤ 1

Which is the same as: ∣∣∣∣ sin(b)− sin(a)

b− a

∣∣∣∣ ≤ 1

Which is the same as:

−1 ≤ sin(b)− sin(a)

b− a
≤ 1

But by the MVT applied to f(x) = sin(x), we get:

sin(b)− sin(a)

b− a
= cos(c)

for some c in (a, b). However, −1 ≤ cos(c) ≤ 1, and so we’re done!
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4.2.32. Let f(x) = 2 sin−1(x), g(x) = cos−1(1− 2x2).

Then f ′(x) = 2√
1−x2

and:

g′(x) = − −4x√
1− (1− 2x2)2

=
4x√

1− 1 + 4x2 − 4x4
=

4x√
4x2 − 4x4

=
4x

2x
√

1− x2
=

2√
1− x2

= f ′(x)

(you get this by factoring out 4x2 out of the square root. This works because
x ≥ 0)

Hence f ′(x) = g′(x), so f(x) = g(x) + C

To get C, plug in x = 0, so f(0) = g(0) + C. But f(0) = g(0) = 0, so C = 0,

whence f(x) = g(x)

4.2.34. Let f(t) be the speed at time t. By the MVT with a = 2 : 00 and b = 2 : 10,
we get:

f(2 : 10)− f(2 : 00)

2 : 10− 2 : 00
= f ′(c)

But 2 : 10− 2 : 00 = 10 minutes = 1
6 h, so:

50− 30
1
6

= f ′(c)

Whence: f ′(c) = 120 for some c between 2 : 00 pm and 2 : 10 pm. But f ′(c) is

the acceleration at time c, and so we’re done!

4.2.36. This is again a proof by contradiction!

Suppose f has (at least) two fixed points a and b.

Then, by definition of a fixed point, f(a) = a, and f(b) = b.

However, by the Mean Value Theorem, there is a c in (a, b) such that:

f(b)− f(a)

b− a
= f ′(c)

Now using the fact that f(b) = b and f(a) = a, we get:

b− a
b− a

= f ′(c)

So

1 = f ′(c)

That is, f ′(c) = 1. However, by assumption, f ′(x) 6= 1 for all x, so in particular
setting x = c gives f ′(c) 6= 1.

but since f ′(c) = 1, we get 1 6= 1, which is a contradiction!

Hence f has at most one fixed point!
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Section 4.3: How derivatives affect the shape of a graph

4.3.2.

(a) (0, 1) ∪ (3, 7)
(b) (1, 3)
(c) (2, 4) ∪ (5, 7)
(d) (0, 2) ∪ (4, 5)
(e) (2, 2), (4, 2.5), (5, 4)

4.3.9.

(a) f ′(x) = 6x2 + 6x − 36 = 6(x − 2)(x + 3); ↗ on (−∞,−3) ∪ (2,∞), ↘ on
(−3, 2)

(b) Local max: f(−3) = 81; Local min: f(2) = −44
(c) f ′′(x) = 12x+6; CU on (− 1

2 ,∞), CD on (−∞, −12 ), IP (− 1
2 , f(−0.5) = 37

2 )

4.3.13.

(a) f ′(x) = cos(x)− sin(x); ↗ on (0, π4 ) ∪ ( 5π
4 ,∞), ↘ on (π4 ,

5π
4 )

(b) Local max: f(π4 ) =
√

2; Local min: f( 5π
4 ) = −

√
2

(c) f ′′(x) = − sin(x) + cos(x); CU on ( 3π
4 ,

7π
4 ), CD on (0, 3π4 ) ∪ ( 7π

4 , 2π), IP

( 3π
4 , 0), ( 7π

4 , 0)

4.3.27. A possible graph looks like this:
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1A/Math 1A Summer/Solution Bank/Concave-Kink.png

4.3.33.

(a) f ′(x) = 3x2 − 12, ↗ on (∞,−2) ∪ (2,∞), ↘ on (−2, 2)
(b) Local min: f(2) = −14, Local max: f(−2) = 18
(c) f ′′(x) = 6x; CD on (−∞, 0), CU on (0,∞); Inflection point at (0, 2)
(d) Draw the graph!

4.3.43.

(a) f ′(θ) = −2 sin(θ)− 2 cos(θ) sin(θ) = −2 sin(θ)(1 + cos(θ)); ↗ on (π, 2π), ↘
on (0, π)

(b) Local min: f(π) = −1, no local max.
(c) f ′′(x) = −2 cos(θ) + 2 sin2(θ) − 2 cos2(θ) = −2 cos(θ) + 2 − 4 cos2(θ) =

−4(cos2(θ)− cos(θ)
2 − 1

2 ) = −4(cos(θ) + 1)(cos(θ)− 1
2 ); CU on (π3 ,

5π
3 ), CD

on (0, π3 ) ∪ ( 5π
3 , 2π), IP (π3 ,

5
4 ), ( 5π

3 ,
5
4 )

(d) Draw the graph!

4.3.45.

(a) VA: x = 0, HA: y = 1 (at ±∞)
(b) f ′(x) = − 1

x2 + 2
x3 = 2−x

x3 ; ↘ on (∞, 0) ∪ (2,∞), ↗ on (0, 2)

(c) Local maximum at (2, 54 ), No local minimum
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(d) f ′′(x) = −6x2+2x3

x6 = −6+2x
x4 = 2x−6

x4 ; CD on (−∞, 0)∪ (0, 3), CU on (3,∞);

IP at (3, 119 )
(e) Draw the graph!

4.3.49.

(a) No VA; HA: y = 0 (at ±∞)

(b) f ′(x) = (−2x)e−x
2

, ↗ on (−∞, 0), ↘ on (0,∞)
(c) Local maximum at (0, 1), no local minimum

(d) f ′′(x) = (−2 + 4x2)e−x
2

= 2(2x2− 1)e−x
2

; CU on
(
−∞,− 1√

2

)
∪
(

1√
2
,∞
)

;

IP at
(
± 1√

2
, e−

1
2

)
(e) Draw the graph!

4.3.77. Let f(x) = tan(x) − x, then f ′(x) = sec2(x) − 1 = 1 + tan2(x) + 1 − 1 =
tan2(x) > 0 on

(
0, π2

)
, hence f is increasing on

(
0, π2

)
. In particular, f(x) > f(0) =

0, so tan(x)− x > 0, so tan(x) > x on
(
0, π2

)
Section 4.4: L’Hopital’s Rule

4.4.3.

(a) No, −∞
(b) Yes, ∞−∞
(c) No, ∞

4.4.4.

(a) Yes, 00

(b) No, 0
(c) Yes, 1∞

(d) Yes, ∞0

(e) No, ∞
(f) Yes, ∞0

4.4.11.

lim
x→(π2 )

+

cos(x)

1− sin(x)
= lim
x→(π2 )

+

− sin(x)

− cos(x)
=
−1

−0−
=
−1

0+
= −∞

4.4.16.

lim
θ→π

2

1− sin(θ)

csc(θ)
= lim
θ→π

2

− cos(θ)
− cos(θ)
sin2(θ)

(l’Hopital’s rule)

= lim
θ→π

2

sin2(θ)(cancelling out)

=1

4.4.17.

lim
x→∞

ln(x)√
x

= lim
x→∞

1
x
1

2
√
x

= lim
x→∞

2√
x

= 0

4.4.27.

lim
x→0

tanh(x)

tan(x)
= lim
x→0

sech2(x)

sec2(x)
= 1
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4.4.29.

lim
x→0

sin−1(x)

x
= lim
x→0

1√
1−x2

1
= 1

4.4.45.

lim
x→∞

x3e−x
2

= lim
x→∞

x3

ex2 = lim
x→∞

3x2

2xex2 =
3

2
lim
x→∞

x

ex2 =
3

2
lim
x→∞

1

2xex2 =
3

2
× 0 = 0

4.4.49.

lim
x→1

x

x− 1
− 1

ln(x)
= lim
x→1

x ln(x)− (x− 1)

(x− 1) ln(x)
= lim
x→1

ln(x) + 1− 1

ln(x) + 1− 1
x

= lim
x→1

1
x

1
x + 1

x2

=
1

2

4.4.53.

lim
x→∞

x− ln(x) = lim
x→∞

x(1− ln(x)

x
) =∞× (1− 0) =∞

4.4.58.

1) Let y =
(
1 + a

x

)bx
2) ln(y) = bx ln(1 + a

x )
3)

lim
x→∞

ln(y) = lim
x→∞

bx ln(1+
a

x
) = lim

x→∞

ln(1 + a
x )

1
bx

= lim
x→∞

( 1
1+ a

x
)(− a

x2 )

(− 1
x2 )( 1

b )
= lim
x→∞

ab

1 + a
x

= ab

4) So limx→∞
(
1 + a

x

)bx
= eab

4.4.61.

1) Let y = x
1
x

2) Then ln(y) = ln(x)
x

3) So limx→∞ ln(y) = limx→∞
ln(x)
x = 0

4) Hence limx→∞ x
1
x = limx→∞ y = e0 = 1

4.4.76.

(a) Here, you want to calculate limt→∞, so treat t as our x, and leave
everything else as a constant!!!!. In particular, we get:

lim
t→∞

e−
ct
m = 0 because c > 0 and m > 0

So, we get:

lim
t→∞

v =
mg

c
(1− 0) =

mg

c

(b) Here, we let c→ 0+, so we treat c as our x, and leave everything else
as a constant!.

Then, we have:
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lim
c→0+

v = lim
c→0+

mg

(
1− e− ctm

c

)

= lim
c→0+

mg

(
−
(
− t
m

)
e−

ct
m

1

)
(by l’Hopital’s rule)

=mg

((
t
m

)
e0

1

)

=mg

((
t
m

)
1

1

)
=
mgt

m
=gt

4.4.77. All you gotta do is show that:

lim
n→∞

(
1 +

r

n

)nt
= ert

1) Let y =
(
1 + r

n

)nt
2) ln(y) = nt ln(1 + r

n )
3) The important thing to realize is that you’re taking the limit as n goes to
∞, which means that r and t are constants!

lim
n→∞

ln(y) = lim
n→∞

nt ln(1+
r

n
) = lim

n→∞

ln(1 + r
n )

1
nt

= lim
n→∞

−r
n2

1+ r
n

− 1
n2t

= lim
n→∞

rn2t
n2

1 + r
n

= lim
n→∞

rt

1 + r
n

=
rt

1 + 0
= rt

4) So limn→∞
(
1 + r

n

)nt
= ert, and hence limn→∞A0

(
1 + r

n

)nt
= A0e

rt

Section 4.5: Summary of curve sketching

4.5.5.

D : R
I : x−intercepts: 0, 4, y−intercept: 0
S : None
A : None, but limx→±∞ f(x) =∞
I : f ′(x) = (x− 4)3 + 3x(x− 4)2 = (x− 4)2(x− 4 + 3x) = (x− 4)2(4x− 4) =

4(x−4)2(x−1); f is decreasing on (−∞, 1) and increasing on (1,∞); Local
minimum f(1) = −27

C : f ′′(x) = 8(x − 4)(x − 1) + 4(x − 4)2 = 4(x − 4)(2x − 2 + x − 4) =
4(x − 4)(3x − 6) = 12(x − 4)(x − 2); f is concave up on (−∞, 2), concave
down on (2, 4), and concave up on (4,∞). Inflection points: (2,−16), (4, 0)
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1A/Math 1A - Fall 2013/Homeworks/Quartic.png

4.5.13.

D : R− {±3}
I : No x−intercepts, y−intercept: y = − 1

9
S : f is even
A : Horizontal Asymptote y = 0 (at ±∞), Vertical Asymptotes x = ±3
I : f ′(x) = − 2x

(x2−9)2 ; f is increasing on (−∞,−3) ∪ (−3, 0) and decreasing

on (0, 3) ∪ (3∞). Local maximum of −19 at 0.

C : f ′′(x) = 6 x2+3
(x2−9)3 ; f is concave up on (−∞,−3) ∪ (3,∞) and concave

down on (−3, 3); No inflection points
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1A/Archive/Homeworks - Spring 2011/hw10graph1.png

4.5.43.

D : R
I : No x−intercepts, y−intercept: y = 1

2
S : No symmetries
A : Horizontal Asymptotes: y = 0 (at −∞), y = 1 (at ∞)

I : f ′(x) = e−x

(1+e−x)2 > 0, so f is decreasing on R
C : f ′′(x) = exex−1

ex+13 (multiply numerator and denominator by (ex)3 after

simplifying), so f is concave down on (−∞, 0) and concave up on (0,∞).
Inflection point at (0, 12 )
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1A/Math 1A Summer/Solution Bank/hw10graph3.png

4.5.45.

D : x > 0
I : No x−intercept because f(x) > 0 for all x (see Increasing/Decreasing

section). No y−intercept (not defined at 0)
S : No symmetries
A : Vertical asymptote x = 0, No Horizontal Asymptote, because:

lim
x→∞

x− ln(x) = lim
x→∞

x

(
1− ln(x)

x

)
=∞(1− 0) =∞

Also no slant asymptote, because if there were such a slant asymptote
y = ax+ b, then:

a = lim
x→∞

ln(x)− x
x

= −1

And then:

b = lim
x→∞

(ln(x)− x)− (−1)x = lim
x→∞

ln(x) =∞

which is a contradiction!
I : f ′(x) = 1 − 1

x = x−1
x , so decreasing on (0, 1) and increasing on (1,∞);

local minimum f(x) = 1. In particular f(x) ≥ 1 for all x, and so f(x) > 0
(hence no x−intercept)

C : f ′′(x) = 1
x2 , concave up on (0,∞); No inflection points.
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4.5.49.

Note: : First of all, f is periodic of period 2π , so from now on we may assume

that x ∈ [0, 2π]

D : We want sin(x) > 0, so the domain is (0, π)

I : No y−intercepts , x−intercepts: Want ln(sin(x)) = 0, so sin(x) = 1, so

x = π
2

S : Again, f is periodic of period 2π
A : No horizontal/slant asymptotes, but limx→0+ ln(sin(x)) = ln(0+) = −∞,

so x = 0 is a vertical asymptote. Also limx→π− ln(sin(x)) = −∞, so
x = π is also a vertical asymptote.

I : f ′(x) = cos(x)
sin(x) = cot(x), then f ′(x) = 0 ⇔ x = π

2 , and using a sign

table, we can see that f is increasing on (0, π2 ) and decreasing on (π2 , π) .

Moreover, f(π2 ) = ln(1) = 0 is a local maximum of f .

C : f ′′(x) = − csc2(x) < 0, so f is concave down on (0, π) .
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1A/Math 1A Summer/Solution Bank/hw10graph.png

4.5.71. At ∞:

Suppose the slant asymptote is y = ax+ b, then:

a = lim
x→∞

x− tan−1(x)

x
= lim
x→∞

1− tan−1(x)

x
= 1−

π
2

∞
= 1

b = lim
x→∞

x− tan−1(x)− x = lim
x→∞

− tan−1(x) = −π
2

Hence x− tan−1(x) has a slant asymptote of y = x− π
2 at ∞

At −∞:

Suppose the slant asymptote is y = ax+ b, then:

a = lim
x→−∞

x− tan−1(x)

x
= lim
x→−∞

1− tan−1(x)

x
= 1−

π
2

−∞
= 1

b = lim
x→−∞

x− tan−1(x)− x = lim
x→−∞

− tan−1(x) = −
(
−π

2

)
=
π

2

Hence x− tan−1(x) has a slant asymptote of y = x+ π
2 at −∞

D Dom = R
I y−intercept: f(0) = 0, x−intercept: 0 (there are no others, because f is

increasing; see Increasing/Decreasing section)
S No symmetries
A No vertical asymptotes (f is defined everywhere), Slant Asymptotes y =
x− π

2 at ∞, y = x+ π
2 at −∞; No H.A. because there are already two S.A.
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I f ′(x) = 1 − 1
1+x2 = x2

1+x2 ≥ 0, so f is increasing everywhere; No local

max/min

C f ′′(x) =
2x(1+x2)−x2(2x)

(1+x2)2
= 2x

(1+x2)2
, so f is concave down on (−∞, 0) and

concave up on (0,∞). Inflection point (0, f(0)) = (0, 0)

1A/Math 1A - Fall 2013/Homeworks/x - arctan(x).png

Section 4.7: Optimization Problems

4.7.3.

- Want to minimize x+ y
- But xy = 100, so y = 100

x , so x+ y = x+ 100
x

- Let f(x) = x+ 100
x

- x > 0 (x is positive)
- f ′(x) = 0⇔ 1− 100

x2 = 0⇔ x2 = 100⇔ x = 10
- By FDTAEV, x = 10 is the absolute minimizer of f

- Answer: x = 10, y = 100
10 = 10

4.7.13. The picture is as follows:
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1A/Math 1A Summer/Solution Bank/Fence.png

- Want to minimize 3w + 4l
- But 2lw = 1.5, so l = 0.75

w , so 3w + 4l = 3w + 3
w

- Let f(w) = 3w + 3
w

- w > 0
- f ′(x) = 0⇔ 3− 3

w2 = 0⇔ w2 = 1⇔ w = 1
- By FDTAEV, w = 1 is the absolute minimum of f

- Answer: w = 1, 2l = 1.5

4.7.14.

- Want to minimize S = x2 + 4xh (where x is the length of the base-side and
h is the height)

- However, V = x2h = 32000, so h = 32000
x2 , so x2 + 4xh = x2 + 4x 32000

x2 =

x2 + 128000
x

- Let f(x) = x2 + 128000
x

- x > 0
- f ′(x) = 0⇔ 2x− 128000

x2 = 0⇔ 2x3 = 128000⇔ x = 3
√

64000 = 40
- By FDTAEV, x = 40 is the absolute minimizer of f

- Answer: x = 40, h = 32000
(40)2 = 32000

1600 = 20

4.7.21.

- We have D =
√

(x− 1)2 + y2, so D2 = (x− 1)2 + y2

- But y2 = 4− 4x2, so D2 = (x− 1)2 + 4− 4x2

- Let f(x) = (x− 1)2 + 4− 4x2

- No constraints
- f ′(x) = 2(x− 1)− 8x = −6x− 2 = 0⇔ x = − 1

3

- By the FDTAEV, x = − 1
3 is the maximizer of f .

- Since y2 = 4− 4x2, we get y2 = 4− 4
9 = 32

9 , so y = ±
√

32
9 = ± 4

√
2

3
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- Answer:
(
− 1

3 ,−
4
√
2

3

)
and

(
− 1

3 ,
4
√
2

3

)
4.7.23. Picture:

1A/Math 1A Summer/Solution Bank/hw10opt1.png

- We have A = xy, but the trick here again is to maximize A2 = x2y2 (thanks
for Huiling Pan for this suggestion!)

- But x2 + y2 = r2, so y2 = r2 − x2, so A2 = x2(r2 − x2) = x2r2 − x4
- Let f(x) = x2r2 − x4
- Constraint 0 ≤ x ≤ r (look at the picture)
- f ′(x) = 2xr2 − 4x3 = 0⇔ x = 0 or x = r√

2

- By the closed interval method, x = r√
2

is a maximizer of f (basically

f(0) = f(r) = 0

- Answer: x = r√
2
, y =

√
r2 − r2

2 = r√
2

4.7.32.

- A = 2rh+ 1
2πr

2

- But P = πr + 2r + 2h = 30, so h = 15− r − π
2 r

- Let f(r) = 2r
(
15− r − π

2 r
)

+ 1
2πr

2 = 30r−2r2−πr2 + 1
2πr

2 = 30r−2r2−
π
2 r

2

- Constraint r > 0
- f ′(r) = 30− 4r − πr = 0⇔ r = 30

π+4

- By FDTAEV, r = 30
π+4 is the minimizer of f

- r = 30
π+4 , h = 15− 30

π+4 −
15π
π+4 = 30

π+4 = r
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4.7.48.

- Let tAB be the time spent rowing from A to B and tBC be the time spent
walking from B to C

- By the formula time = distance
velocity , we have:

tAB =
AB

2
=

cos(θ)AC

2
=

4 cos(θ)

2
= 2 cos(θ)

tBC =
BC

4
=

2× ∠BOC
4

=
2× 2θ

4
= θ

(here O is the origin; it is a geometric fact that ∠BOC = 2∠BAC)
- Let f(θ) = 2 cos(θ) + θ
- Constraint: 0 ≤ θ ≤ π

2 (see the picture!)

- f ′(θ) = −2 sin(θ) + 1 = 0⇔ sin(θ) = 1
2 ⇔ θ = π

3

- f(0) = 2, f
(
π
2

)
= π

2 and f
(
π
3

)
= 2×

√
3
2 + π

3 =
√

3 + π
3 .

By the closed interval method, θ = π
2 is an absolute minimizer.

- Therefore, she should just walk! (which makes sense because she walks
much faster than she rows!)

4.7.57. (a) c′(x) = C′(x)x−C(x)
x2 . When c is at its minimum, c′(x) = 0, so C ′(x)x−

C(x) = 0, so C ′(x) = C(x)
x = c(x), so C ′(x) = c(x) , i.e. marginal cost equals the

average cost!

4.7.61.

(a) p(x) = 550− x
10 (Basically imitate Example 6 on page 331)

(b) The revenue function is R(x) = xp(x) = 550x − x2

10 . R′(x) = 0 ⇔ 550 =
x
5 ⇔ x = 2750, and the corresponding price is p(2750) = 550 − 275 = 275
and the rebate is 450− 275 = 175 dollars

(c) Here the profit function is P (x) = R(x)−C(x) = 550x− x2

10 −68000−150x.
P ′(x) = 0⇔ 550− x

5 − 150 = 0⇔ x = 2000, so the corresponding price is
p(2000) = 550− 200 = 350, so the corresponding rebate is 450− 350 = 100
dollars

4.7.67. (thank you Brianna Grado-White for the solution to this problem!)
The picture is as follows:
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Here, h1 and h2 and L are fixed, but x varies.
Now the total time taken is t = t1 + t2 = d1

v1
+ d2

v2
.

Now, by the Pythagorean theorem: d1 =
√
x2 + h21 and d2 =

√
(L− x)2 + h22,

so we get:

t(x) =

√
x2 + h21
v1

+

√
(L− x)2 + h22

v2

And

t′(x) =
x

v1
√
x2 + h21

+
x− L

v2
√

(L− x)2 + h22
=

x

v1d1
+
x− L
v2d2

Setting t′(x) = 0 and cross-multiplying, we get:

v1d1(L− x) = v2d2x

So, by definition of sin(θ1) and sin(θ2)), we get:

v1
v2

=
d2x

(L− x)d1
=

x
d1
L−x
d2

=
sin(θ1)

sin(θ2)

4.7.70. The picture is as follows (Note that the two θ−s are indeed the same!)
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- We want to minimize L1 + L2

- cos(θ) = L1

9 , so L1 = 9
cos(θ) , sin(θ) = L2

6 , so L2 = 6
sin(θ)

- Let f(θ) = 9
cos(θ) + 6

sin(θ)

- Constraint: 0 < θ < π
2 (Notice that at 0 and π

2 , we can’t carry the pipe
horizontally around the corner; it would break at that corner)

- f ′(θ) = 9 sin(θ)
cos2(θ) + −6 cos(θ)

sin2(θ)
= 9 sin3(θ)−6 cos3(θ)

cos2(θ) sin2(θ)
= 0

⇔ 9 sin3(θ)− 6 cos3(θ) = 0⇔
(

sin(θ)
cos(θ)

)3
= 6

9 = 2
3 ⇔ tan3(θ) = 2

3 ⇔ θ =

tan−1
(

3

√
2
3

)
- By FDTAEV, θ = tan−1

(
3

√
2
3

)
is the absolute minimizer of f

- Answer: 9
cos(θ) + 6

sin(θ) , where θ = tan−1
(

3

√
2
3

)
(if you want to, you

can simplify this using the triangle method: 1
cos(tan−1(x)) =

√
1 + x2 and

1
sin(tan−1(x)) =

√
1+x2

x , but I think this is enough torture for now :)

Section 4.8: Newton’s method

4.8.38. As usual, a good picture is the key to solving the problem:
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Note: This picture is very complete. It is meant to illustrate all the points I
am making below.

Here, we are given a lot of information, so let’s try to tackle this problem one
step at a time!

First, let’s calculate the equation of any tangent line to the graph of f(x) =
−sin(x) that goes through (0, 0). Later, we will be worrying about finding the one
that has the largest slope.

By definition of the derivative, the tangent line to the graph of f at c has slope
f ′(c) = − cos(c), so any such tangent line that also goes through (0, 0) has equa-
tion: y− 0 = − cos(c)(x− 0), i.e. y = − cos(c)x. Finally, we know that the tangent
line goes through (c,− sin(c)) (i.e. goes through the graph of f at c), so we get:
− sin(c) = − cos(c) · c, i.e. tan(c) = c.

So any tangent line at c with the above properties must solve tan(c) = c, i.e.
tan(c)− c = 0.

So what we really need to do is to approximate the zero of the function g(x) =
tan(x)− x. Now this looks like a Newton’s method problem! But remember, that
for Newton’s method, we need to find a good initial guess, and here is where we
use the information that the tangent line must have largest slope!

First of all, notice that f(x) = − sin(x) is odd, so the graph is symmetric about
the origin! If you look at the picture above, you’ll see that the tangent line to
the graph at c is the same as the tangent line at −c. This means we can restrict
ourselves to the right-hand-side of the picture, i.e. c ≥ 0! (if you don’t understand
this argument, don’t worry, it’s just a simplification)

And if you look at the picture again, you’ll notice that if your initial guess is
between 0 and π

2 , your successive approximations will got to 0. And you don’t
want that because the slope of the tangent line at 0 is −1 (which is not the greatest
slope). The same problem arises with the initial guess between 3π

2 and 2π (the
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approximations go to 2π)

Finally, notice that when c gets larger and larger, the tangent line at c has
smaller and smaller slope (see picture: The brown line has a smaller slope than the
blue line, which has a smaller slope than the green line), so you’d like your initial
guess not to be too large. In particular, we don’t want the initial guess to be larger
than 3π

2 !

From this analysis, we conclude that any initial guess between π
2 and 3π

2 is good
enough! (also look at the picture above: the green tangent line seems to be the
winner here)

For example, with x0 = 4.5 (or you could try x0 = π), we get the succes-
sive approximations (remember that you are applying Newton’s method to g(x) =
tan(x)− x, NOT f(x)!):

x0 =4.5

x1 =4.49361390

x2 =4.49340966

x3 =4.49340946

x4 =4.49340946

And so, our approximation is: c ≈ 4.49340946 . And hence the largest slope is

approximately equal to − cos(4.49340946) ≈ 0.2172336 (because f ′(c) = − cos(c)).

To summarize:

• Draw a picture
• Derive the function that you want to apply Newton’s method to (i.e. g(x) =

tan(x)− x)
• Argue that your intial approximation must be between π

2 and 3π
2 (YOU

NEED TO JUSTIFY THIS PART!, maybe not as precise as I did, but
there needs to be some justification
• Apply Newton’s method to g with initial approximation between π

2 and 3π
2

(4 would work)

Section 4.9: Antiderivatives

4.9.16. R(θ) = sec(θ)− 2eθ

4.9.35. f(x) = −2 sin(t) + tan(t) + C, but 4 = f(π3 ) = −
√

3 +
√

3 + C = C, so
f(x) = −2 sin(t) + tan(t) + 4

4.9.41. If f ′′(θ) = sin(θ) + cos(θ), then f ′(θ) = − cos(θ) + sin(θ) + C.
f ′(0) = 4, so −1 + 0 + C = 4, so C = 5.
Hence f ′(θ) = − cos(θ) + sin(θ) + 5.
Hence f(θ) = − sin(θ)− cos(θ) + 5θ + C ′.
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f(0) = 3, so −0− 1 + 0 + C ′ = 3, so C ′ = 4.

Hence f(θ) = − sin(θ)− cos(θ) + 5θ + 4

4.9.63. a(t) = 10 sin(t) + 3 cos(t), so v(t) = −10 cos(t) + 3 sin(t) + A, so s(t) =
−10 sin(t)− 3 cos(t) +At+B

Now, s(0) = 0, but s(0) = −10(0)− 3(1) +A(0) +B, so −3 +B = 0, so B = 3

So s(t) = −10 sin(t)− 3 cos(t) +At+ 3

Moreover, s(2π) = 12, but s(2π) = −10(0) − 3(1) + A(2π) + 3 = A(2π), so
A(2π) = 12, so A = 12

2π = 6
π

So altogether, you get: s(t) = −10 sin(t)− 3 cos(t) + 6
π t+ 3

4.9.76. Suppose the acceleration of the car is a(t) = A. Then v(t) = At + B and
s(t) = A

2 t
2 +Bt+ C.

However, at t = 0, the car is moving at 100 km/h, so v(0) = 100, so B = 100,
hence v(t) = At+ 100 and s(t) = A

2 t
2 + 100t+ C.

Moreover, at t = 0, the car is at its initial position 0, so s(0) = 0, so C = 0,
hence s(t) = A

2 t
2 + 100t

Now let t∗ be the time needed to real the pile-up.

We want the car to have 0 velocity at t∗, hence v(t∗) = 0, hence At∗ + 100 = 0,
so At∗ = −100

Moreover, we want s(t∗) = 80m = 0.08 km, so A
2 (t∗)

2
+ 100t∗ = 0.08, but using

the fact that At∗ = −100, this just becomes: −100t
∗

2 + 100t∗ = 0.08, so 50t∗ = 0.08,

so t∗ = 1
625 .

ThereforeA = − 100
t∗ = −100×625 = −62500 km/h2, so the answer is 62500 km/h2 .

Section 5.1: Areas and Distances

5.1.2.

(a) (i) ∆x = 2, so

L6 = f(0)(2)+f(2)(2)+f(4)(2)+f(6)(2)+f(8)(2)+f(10)(2) = 18+
52

3
+

50

3
+

44

3
+12+8 =

260

3
≈ 86.67

(ii)

R6 = f(2)(2)+f(4)(2)+f(6)(2)+f(8)(2)+f(10)(2)+f(12)(2) =
52

3
+

50

3
+

44

3
+12+8+2 =

212

3
≈ 70.67

(iii)

M6 = f(1)(2)+f(3)(2)+f(5)(2)+f(7)(2)+f(9)(2)+f(11)(2) = 18+17+15+13+10+
16

3
=

235

3
≈ 78.33
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(b) Overestimate
(c) Underestimate
(d) M6 (just right, does not overshoot, like L6, but not undershoot either, like

R6)

5.1.5.

(a) If n = 3, then ∆x = 1, and if n = 6, ∆x = 1
2 , so:

R3 = f(0)(1) + f(1)(1) + f(2)(1) = 1 + 2 + 5 = 8

R6 =f(−0.5)(0.5) + f(0)(0.5) + f(0.5)(0.5) + f(1)(0.5) + f(1.5)(0.5) + f(2)(0.5)

=1.25(0.5) + 1(0.5) + 1.25(0.5) + 2(0.5) + 3.25(0.5) + 5(0.5)

=6.875

(b)

L3 = f(−1)(1) + f(0)(1) + f(1)(1) = 2 + 1 + 2 = 5

L6 =f(−1)(0.5) + f(−0.5)(0.5) + f(0)(0.5) + f(0.5)(0.5) + f(1)(0.5) + f(1.5)(0.5)

=2(0.5) + 1.25(0.5) + 1(0.5) + 1.25(0.5) + 2(0.5) + 3.25(0.5)

=5.375

(c)

M3 = f(−0.5)(1) + f(0.5)(1) + f(1.5)(1) = 5.75

M6 = f(−0.75)(0.5)+f(−0.25)(0.5)+f(0.25)(0.5)+f(0.75)(0.5)+f(1.25)(0.5)+f(1.75)(0.5) = 5.9375

(d) M6

5.1.13. Here n = 6 and ∆x = 0.5

L6 =v(0)(0.5) + v(0.5)(0.5) + v(1)(0.5) + v(1.5)(0.5) + v(2)(0.5) + v(2.5)(0.5)

=0(0.5) + 6.2(0.5) + 10.8(0.5) + 14.9(0.5) + 18.1(0.5) + 19.4(0.5)

=34.7

R6 =v(0.5)(0.5) + v(1)(0.5) + v(1.5)(0.5) + v(2)(0.5) + v(2.5)(0.5) + v(3)(0.5)

=6.2(0.5) + 10.8(0.5) + 14.9(0.5) + 18.1(0.5) + 19.4(0.5) + 20.2(0.5)

=44.8

5.1.17. The midpoint sum seems to best approximate the area:

M6 = v(0.5)(1)+v(1.5)(1)+v(2.5)(1)+v(3.5)(1)+v(4.5)(1)+v(5.5)(1) = 50+40+30+18+10+5 = 153ft
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5.1.19. Here ∆x = 2
n and xi = 1 + 2i

n , so:

lim
n→∞

∞∑
i=1

2

n

2
(
1 + 2i

n

)(
1 + 2i

n

)2
+ 1

5.1.20. Here ∆x = π
n and xi = πi

n , so:

lim
n→∞

∞∑
i=1

π

n

√
sin

(
πi

n

)

5.1.22. The area under the curve of f(x) = x10 from 5 to 7 (or, if you want, the

area under the curve of f(x) = (x+ 5)
10

from 0 to 2)

5.1.23. The area under the curve of f(x) = tan(x) from 0 to π
4

5.1.30.

(a) We are given that the polygon is made out of n congruent triangles, so
An = n · T , where T is the area of each triangle. So all we need to find is
T .

Here again, a picture tells a thousand words, so by drawing the picture
of such a triangle, we can figure out its area:

1A/Math 1A Summer/Solution Bank/Polygon.png

Using the picture, you’ll notice that:

T =
1

2
·A ·B =

A

2
B

And we can divide the triangle into two right triangles, and hence use
trigonometry to calculate A

2 and B! Here, θ = 2π
n , the central angle!
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We get:

cos

(
θ

2

)
=
B

r

B = r · cos

(
θ

2

)

sin

(
θ

2

)
=

A
2

r

A

2
= r · sin

(
θ

2

)

And so, we get:

T =
A

2
·B = r·sin

(
θ

2

)
·r·cos

(
θ

2

)
= r2·sin

(
θ

2

)
cos

(
θ

2

)
= r2

1

2
sin

(
2 · θ

2

)
=

1

2
r2 sin(θ) =

1

2
r2 sin

(
2π

n

)

Here, we used the fact that, in general, 2 sin(x) cos(x) = sin(2x), so
sin(x) cos(x) = 1

2 sin(2x).

And so, we have:

An = n · T = n · 1

2
r2 sin

(
2π

n

)
=

1

2
nr2 sin

(
2π

n

)

(b) Actually, the hint tells us that we don’t even have to use l’Hopital’s rule,
but rather the rule that:

lim
x→0

sin(x)

x
= 1

We have that:
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lim
n→∞

An = lim
n→∞

1

2
r2n sin

(
2π

n

)
=

1

2
r2 lim

n→∞
n sin

(
2π

n

)
=

1

2
r2 lim

n→∞

sin
(
2π
n

)
1
n

=
1

2
r2 lim

n→∞

2π sin
(
2π
n

)
2π
n

=2π · 1

2
r2 lim

n→∞

sin
(
2π
n

)
2π
n

=πr2 lim
x→0

sin(x)

x

(
x =

2π

n

)
=πr2(1)

=πr2

The basic idea is that, if we have an indeterminate form of the form
”0 · ∞”, we rewrite ∞ as 1

0 , or we rewrite 0 as 1
∞ . Here, for example, we

wrote n = 1
1
n

in order to apply the hint in the problem!

And hooray, you just proved that the formula for the area of a circle of
radius r is πr2. But actually, you didn’t, because trigonometry, which you
used in (a), relies heavily on this formula!

Section 5.2: The definite integral

5.2.18.
∫ 2π

π
cos(x)
x dx

5.2.21. First of all, a = 2, b = 5, ∆x = 3
n and xi = 2 + 3i

n
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∫ 5

2

4− 2xdx = lim
n→∞

n∑
i=1

3

n

(
4− 2

(
2 +

3i

n

))

= lim
n→∞

3

n

n∑
i=1

(
4− 4− 6i

n

)

= lim
n→∞

3

n

(
n∑
i=1

−6

n
i

)

= lim
n→∞

−18

n2

(
n∑
i=1

i

)

= lim
n→∞

−18

n2

(
n(n+ 1)

2

)
= lim
n→∞

−9n2

n2 + n

= lim
n→∞

−9n2

n2
(
1 + 1

n

)
= lim
n→∞

−9(
1 + 1

n

)
=− 9

5.2.23. First of all, a = −2, b = 0, ∆x = 2
n and xi = −2 + 2i

n
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∫ 0

−2
x2 + xdx = lim

n→∞

n∑
i=1

2

n

(
−2 +

2i

n

)2

+

(
−2 +

2i

n

)

= lim
n→∞

2

n

n∑
i=1

(
4− 8i

n
+

4i2

n2
− 2 +

2i

n

)

= lim
n→∞

2

n

n∑
i=1

(
4i2

n2
− 6i

n
+ 2

)

= lim
n→∞

2

n

n∑
i=1

(
4i2

n2

)
− 2

n

n∑
i=1

(
6i

n

)
+

2

n

n∑
i=1

(2)

= lim
n→∞

8

n3

(
n∑
i=1

i2

)
− 12

n2

(
n∑
i=1

i

)
+

4

n

(
n∑
i=1

1

)

= lim
n→∞

8

n3

(
n(n+ 1)(2n+ 1)

6

)
− 12

n2

(
n(n+ 1)

2

)
+

4

n
n

= lim
n→∞

8

6

(
1 +

1

n

)(
2 +

1

n

)
− 6

(
1 +

1

n

)
+ 4

=
4

3
× 2− 6 + 4

=
8

3
− 2

=
2

3

5.2.30. ∆x = 9
n , so xi = 1 + 9i

n , and so:

∫ 10

1

x−4 ln(x)dx = lim
n→∞

n∑
i=1

∆(x)(xi−4 ln(xi)) = lim
n→∞

n∑
i=1

9

n

((
1 +

9i

n

)
− 4 ln

(
1 +

9i

n

))

5.2.34.

(a) 4 (the area of the large triangle)
(b) −2π (minus the area of the semicircle)
(c) 4 − 2π + 1

2 = 9
2 − 2π (the area of the large triangle minus the area of the

semicircle plus the area of the small triangle)

5.2.37. 3 + 9π
4 (the area of a rectangle plus the area of a quarter of a circle of

radius 3)

5.2.43.
∫ 1

0
5− 6x2dx = 5

∫ 1

0
1dx− 6

∫ 1

0
x2dx = 5− 6 1

3 = 5− 2 = 3

5.2.44.
∫ 3

1
2ex − 1dx = 2

∫ 3

1
exdx−

∫ 3

1
1dx = 2(e3 − e)− 2
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5.2.47.∫ 2

−2
f(x)dx+

∫ 5

2

f(x)dx−
∫ −1
−2

f(x)dx =

∫ 5

−2
f(x)dx−

∫ −1
−2

f(x)dx =

∫ 5

−2
f(x)dx+

∫ −2
−1

f(x)dx =

∫ 5

−1
f(x)dx

5.2.54. m ≤ f(x) ≤M , so integrating from 0 to 2, we get 2m ≤
∫ 2

0
f(x)dx ≤ 2M

5.2.56. On [0, 1], x2 ≤ x, so 1 + x2 ≤ 1 + x, so
√

1 + x2 ≤
√

1 + x, so integrating

from 0 to 1, we get
∫ 1

0

√
1 + x2dx ≤

∫ 1

0

√
1 + xdx

5.2.69. As usual, let f(x) be as in the problem, a = 0, b = 1, xi = i
n , and

∆(x) = 1
n .

First, let’s draw a picture of what’s going on:

1A/Math 1A Summer/Solution Bank/Nonintegrable.png

In the picture above, the green dots represent where f(x) = 0 and the red lines
represent where f(x) = 1. This problem is unlike the problem above! In this case,
the function does not blow up to infinity, but it can’t make up its mind! We need
to somehow use this fact in order to show that f is not integrable!

But even though this problem is different, the general strategy is almost the
same. f integrable means that no matter how we choose the x∗i , we get the same
answer! So to show that something is NOT integrable, we have to pick two differ-
ent sets of points x∗i and y∗i that give us two different answers!
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And here is where we use the fact that f looks the way it does. Namely, let x∗i be
your favorite rational number in [xi−1, xi] and y∗i your favorite irrational number
in [xi−1, xi]! For example (you don’t have to write this, but it’s better if you do!),
you can choose:

x∗i = xi =
1

n

y∗i =
i√
2n

And you can check that x∗i ∈ [xi−1, xi], and y∗i ∈ [xi−1, xi].

But the point is that x∗i is rational, and so f (x∗i ) = 0 by definition of f , and
thus the Riemann sum equals to:

lim
n→∞

n∑
i=1

f (x∗i ) ∆(x) = lim
n→∞

n∑
i=1

0 · 1

n
= 0

And y∗i is rational, and so f (y∗i ) = 1 by definition of f , and thus the Riemann
sum equals to:

lim
n→∞

n∑
i=1

f (y∗i ) ∆(x) = lim
n→∞

n∑
i=1

1 · 1

n
= lim
n→∞

n

n
= lim
n→∞

1 = 1

And so we get two different answers (even though we’re supposed to get the same
answer if f were integrable)!!! Which shows that f is not integrable on [0, 1]!

5.2.70. Let f(x) = 1
x , a = 0, b = 1. Then xi = i

n and ∆(x) = 1
n .

How can we show that something is not integrable? The main point is: Given
n we need to CHOOSE a set of points x∗i ∈ [xi−1, xi] that ’fails’ (whatever
that might mean). As discussed in section, the following choice is a good one:

x∗1 =
1

n2

x∗i = xi for i ≥ 2

This works BECAUSE x∗1 ∈ [x0, x1] = [0, 1
n ] and x∗i ∈ [xi−1, xi] (for i ≥ 2).

Always check this on the exam!
Because then, we have:

n∑
i=1

f (x∗i ) ∆(x) ≥ f (x∗1) ∆(x) =
1
1
n2

· 1

n
=
n2

n
= n

Here, we use the fact that every term in the sum is positive, so the sum is greater
than its first term f (x∗1) ∆(x). Also, ∆(x) = 1

n .

And now, if we let n→∞, the right-hand-side goes to∞, and so by comparison,

lim
n→∞

n∑
i=1

f (x∗i ) ∆(x) =∞
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So with this choice of x∗i , things have gone awry! The Riemann sum ’blows’ up
to infinity, and so f is not integrable over [0, 1]. The point is: if a function is
integrable, then its integral has to be finite.

Other solution:
Some people wrote up another solution, which is also pretty clever!

Basically, let x∗i = xi = i
n (1 ≤ i ≤ n), which is in [xi−1, xi].

Then:

n∑
i=1

f (x∗i ) ∆(x) =

n∑
i=1

f

(
i

n

)
· 1

n
=

n∑
i=1

(n
i

)
· 1

n
=

n∑
i=1

1

i

However, some of you might know that:

lim
n→∞

n∑
i=1

1

i
=∞

It’s ok if you don’t know this, you’re not even supposed to know this because it’s
covered in Math 1B! (that’s why I don’t know how many points you would actually
get on the exam for this answer...)

And thus:

n∑
i=1

f (x∗i ) ∆(x) = lim
n→∞

n∑
i=1

1

i
=∞

And hence f is not integrable on [0, 1] WARNING: Note that you CANNOT

just say that f is not integrable because it has a vertical asymptote at x = 0! For
example, the function g(x) = 1√

x
has a vertical asymptote at x = 0, but:∫ 1

0

1√
x
dx =

[
2
√
x
]1
0

= 2

Because 2
√
x is an antiderivative of 1√

x

Section 5.3: The Fundamental Theorem of Calculus

5.3.7. 1
x3+1

5.3.15. sec2(x)
√

tan(x) +
√

tan(x)

5.3.17. 3 (1−3x)3
1+(1−3x)2

5.3.27. − 37
6 (Write (u+ 2)(u− 3) = u2 − u− 6)
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5.3.31. 1 (antiderivative is tan(t))

5.3.35. ln(2) + 7 (Write v3+3v6

v4 = 1
v + 3

v2 , whose antiderivative is ln |v| − 3
v )

5.3.37. 1
e+1 + (e− 1) (Antiderivative is xe+1

e+1 + ex)

5.3.39. 8
(
π
3 −

π
6

)
= 4π

3 (antiderivative is 8 tan−1(t))

5.3.43. 1 + (−1) = 0 (split up the integral into
∫ π

2

0
sin(x)dx+

∫ π
π
2

cos(x)dx)

5.3.45. 1
x4 is discontinuous at 0 (the FTC applies only to continuous functions)

5.3.57. F ′(x) = 2xex
4 − ex2

5.3.67.

(a) g′(x) = f(x) = 0 ⇒ x = 1, 3, 5, 7, 9, but 9 is an endpoints, so ignore it.
Hence, by the second derivative test:

• g′′(1) = f ′(1) < 0, so g has a local max at 1
• g′′(3) = f ′(3) > 0, so g has a local min at 3
• g′′(5) = f ′(5) < 0, so g has a local max at 5
• g′′(7) = f ′(7) > 0, so g has a local min at 7

In summary, g attains a local minimum at 3 and 7 , and a local maxi-

mum at 1 and 5 .

(b) You do this by guessing. The candidates are 0, 1, 3, 5, 7, 9 (critical points
and endpoints). Notice g(0) = 0, g(3) < 0 but g(5) > 0, so you can elimi-
nate 0 and 3. Also g(5) > g(1), so you can eliminate 1. Also g(7) < 0, so
you can eliminate 7. This leaves us with 5 and 9, but notice that g(5) = g(9)

(the areas between 5 and 9 cancel out), so the answer is x = 5 and x = 9
(the book only writes x = 9, but I disagree)

(c) g′′(x) = f ′(x), so to see where g is concave down, we have to check where

f ′(x) < 0, i.e. where f is decreasing. The answer is
(
1
2 , 2
)
∪ (4, 6) ∪ (8, 9) .
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(d) 1A/Math 1A - Fall 2013/Homeworks/FTCSol.png

5.3.70. First rewrite the limit as:

lim
n→∞

1

n

n∑
i=1

√
i

n

And you should recognize that ∆x = 1
n , f(x) =

√
x, xi = i

n . In particular
a = x0 = 0 and b = xn = n

n = 1, so in fact this limit equals to:

∫ 1

0

√
xdx =

[
2

3
x

3
2

]1
0

=
2

3
− 0 =

2

3

Section 5.4: Indefinite Integrals and the Net Change Theorem

5.4.10. 1
6v

6 + v4 + 2v2 + C (expand out)

5.4.12. x3

3 + x+ tan−1(x) + C

5.4.13. − cos(x) + cosh(x) + C

5.4.25. −2 (expand out)

5.4.31. 55
63 (Write this as x

4
3 + x

5
4 , with antiderivative 3

7x
7
3 + 4

9x
9
4 )

5.4.37. 1 + π
4 (Antiderivative is tan(θ) + θ, because:)

1 + cos2(θ)

cos2(θ)
=

1

cos2(θ)
+

cos2(θ)

cos2(θ)
= sec2(θ) + 1

5.4.49. 4
3 (antiderivative is y2 − y3

3 )

5.4.54. The bee population after 15 weeks
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5.4.61.

(a) v(t) = t2

2 + 4t+ 5

(b) s(10)− s(0) = 2500
6 (antiderivative is t3

6 + 2t2 + 5t)

5.4.62.

(a)

s(6)−s(1) =

∫ 6

1

v(t)dt =

∫ 6

1

(
t2 − 2t− 8

)
dt =

[
t3

3
− t2 − 8t

]6
1

= −12+
26

3
= −10

3

(Alternatively, you could have just calculated s(t) by antidifferentiating
v and then calculated s(6)− s(1) directly)

(b) Notice that v(t) = (t+ 2)(t− 4) = 0, which gives t = 4 (since t ≥ 0). So in
particular v(t) ≤ 0 on [1, 4] (the particle is moving to the left) and v(t) ≥ 0
on [4, 6] (the particle is moving to the right), hence we must find:

s(1)− s(4) + s(6)− s(4) =− (s(4)− s(1)) + (s(6)− s(4))

=−
∫ 4

1

v(t)dt+

∫ 6

2

v(t)dt

=−
∫ 4

1

(
t2 − 2t− 8

)
dt+

∫ 6

4

(
t2 − 2t− 8

)
dt

=−
[
t3

3
− t2 − 8t

]4
1

+

[
t3

3
− t2 − 8t

]6
4

=− (−18) +
44

3

=
98

3

5.4.63. 140
3 (antiderivative is 9x+ 4

3x
3
2 , and a = 0, b = 4)

5.4.64. 1800 (antiderivative is 200t− 2t2, a = 0, b = 10)

Section 5.5: The substitution rule

5.5.7. 1
2 cos(x2) (u = x2, du = 2xdx)

5.5.31. etan(x) + C (u = tan(x), du = sec2(x)dx)

5.5.33. − 1
sin(x) (u = sin(x), du = cos(x)dx)

5.5.48. 1
5 (x2 + 1)

5
2 − 1

3 (x2 + 1)
3
2 (u = x2 + 1, du = 2xdx, x2 = u− 1)

5.5.59. e−
√
e (u = 1

x , du = − 1
x2 dx, a = 1, b = 1

2 )

5.5.62. sin(1) (u = sin(x), du = cos(x), a = 0, b = 1)
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5.5.77. 0 + 6π (the first integral is 0 because the function is an odd function, or
use u = 4 − x2, du = −2xdx, a = 0, b = 0, and the second integral represents the
area of a semicircle with radius 2)

5.5.86. Using the substitution u = x2, we get du = 2xdx, so xdx = 1
2du. Moreover,

the endpoints become u(0) = 0 and u(3) = 9, so:

∫ 3

0

xf
(
x2
)
dx =

∫ 9

0

f(u)
1

2
du =

1

2

∫ 9

0

f(x)dx =
4

2
= 2

5.5.92.

(a) For the first integral, let u = cos(x), then du = − sin(x)dx = −
√

1− u2dx,

so the first integral becomes
∫ 0

1
f(u)

−
√
1−u2

du =
∫ 1

0
f(u)√
1−u2

du. For the second

integral, let u = sin(x), then du = cos(x)dx =
√

1− u2dx, so the second

integral becomes
∫ 1

0
f(u)√
1−u2

du, and it is now clear that both integrals are

equal!

Note: Another solution is to use u = π
2 − x and use the fact that

sin(x) = sin
(
π
2 − u

)
= cos(u).

(b) By (a) with f(x) = x2 (for the first step), and the fact that sin2(x) =
1− cos2(x), we get:

∫ π
2

0

cos2(x)dx =

∫ π
2

0

sin2(x)dx =

∫ π
2

0

1dx−
∫ π

2

0

cos2(x)dx =
π

2
−
∫ π

2

0

cos2(x)dx

Solving for
∫ 2

0
cos2(x)dx, we get:

∫ 2

0
cos2(x)dx = π

4 , and hence
∫ 2

0
sin2(x)dx = π

4

(by (a))

Section 6.1: Areas between curves

6.1.1.
∫ 4

0
(5x− x2)− xdx =

∫ 4

0
4x− x2dx = 32

3

6.1.3.
∫ 1

−1 e
y − (y2 − 2)dy = e− e−1 + 10

3

6.1.13.
∫ 3

−3(12− x2)− (x2 − 6)dx =
∫ 3

−3 18− 2x2dx = = 72

(points of intersection are x = ±3)
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6.1.21. To find the points of intersection, solve:

tan(x) =2 sin(x)

sin(x)

cos(x)
=2 sin(x)

sin(x) =2 sin(x) cos(x)

sin(x)(1− 2 cos(x)) =0

which implies either sin(x) = 0, that is x = 0, or cos(x) = 1
2 , that is, x = ±π3 .

Hence, if you draw a good picture, you’ll see that we need to find:∫ 0

−π3
tan(x)− 2 sin(x)dx+

∫ π
3

0

2 sin(x)− tan(x)dx

But by symmetry (see your picture), both of those integrals are equal to each
other, and therefore:

A =2

(∫ π
3

0

2 sin(x)− tan(x)dx

)
=2 [−2 cos(x)− ln(sec(x))]

π
3
0

=2

(
−2

1

2
− ln(2) + 2− ln(1)

)
=2 (−1− ln(2) + 2− 0)

=2 (1− ln(2))

=2− 2 ln(2)

6.1.42.
∫ 1

2

− 1
2

1− |y| − 2y2dy =
∫ 0

− 1
2

1 + y− 2y2dy+
∫ 1

2

0
1− y− 2y2dy = − 7

24 + 7
24 =

7
6 .

(to find the points of intersection, solve 2y2 = 1 − |y|, and split up into the two
cases y ≥ 0 and y < 0). Also, it might help to notice that your function is even, so
you really only care about the case where y ≥ 0.

6.1.43. Here n = 5, and D u 2(f(1) + f(3) + f(5) + f(7) + f(9)) = 2
60 (2 + 6 + 9 +

11+12) = 117 1
3 , where f(x) = vK−vC (notice that vK ≥ vC throughout the race!)

6.1.51. The first region has area equal to
∫ b
0

2
√
ydy = 4

3b
3
2 (notice that we’re

integrating with respect to y, and y = x2 ⇔ y = ±
√
x. Also, draw a picture to see

why we have an extra factor of 2 in the integral). The second region has area equal

to
∫ 4

b
2
√
ydy = − 4

3b
3
2 + 32

3 , so to solve for b, we need to set those two areas equal:

4

3
b

3
2 = −4

3
b

3
2 +

32

3
⇔ 8

3
b

3
2 =

32

3
⇔ b

3
2 = 4⇔ b = 4

2
3
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Section 6.2: Volumes

Note: In case you’re confused by what I mean with K, Outer, Inner, etc., make
sure to check out the ‘Volumes’-Handout on my website.

6.2.6. Disk method, K = 0, x = ey, so
∫ 2

1
π(ey)2dy =

∫ 2

1
π(e2y)dy = π

2 (e4 − e2)

6.2.13. Washer method, K = 1, Outer = (3)− 1 = 2, Inner = (1 + sec(x))− 1 =
sec(x), Points of intersection ±π3 , so:

∫ π
3

−π3
π(22−sec2(x))dx = π(4

2π

3
−tan(

π

3
)+tan(

−π
3

)) = π(
8π

3
−2
√

3) = 2π

(
4

3
π −
√

3

)
6.2.17. Washer method, K = −1, and notice y = x2 ⇔ x =

√
y (in this case

x ≥ 0), Outer =
√
y − (−1) =

√
y + 1, Inner = y2 − (−1) = y2 + 1, Point of

intersection y = 0 and y = 1, so:∫ 1

0

π(
√
y + 1)2 − (y2 + 1)2dy =

29π

30

6.2.47. Disk method, K = 0,
∫ h
0
π
(
r − r

hx
)2
dx = π

3 r
2h (the point is to rotate

the usual cone by 90◦ so that its height lies on the x−axis, and the base disk lies
on the y−axis., and this it’s easy to use the disk method!)

6.2.49. Disk method, K = 0,
∫ r
r−h π(

√
r2 − y2)2dy =

∫ r
r−h π(r2−y2)dy πh2

(
r − 1

3h
)

(use the fact that x2 + y2 = r2, and solve for y)

6.2.55. A(x) = 1
2L

2 = 1
2 ( b√

2
)2 = 1

4b
2 = 1

4 (2y)2 = y2 = 36−9x2

4 = 9 − 9
4x

2 (here

L is the length of a side of the triangle, and b = 2y is the hypotenuse) so V =∫ 2

−2
(
9− 9

4x
2
)
dx = 24 (you get the endpoints by setting y = 0 in 9x2 + 4y2 = 36)

6.2.65. The point is to draw a very good picture! Make one sphere have center
(0,− r2 ) in the xy−plane and the other one have center (0, r2 ). Then the volume is
really the volume of two pieces of equal volume, let’s focus on x ≥ 0 only! Then,
using the disk method, you get:

V = 2

∫ r
2

0

π

(√
r2 −

(
x+

r

2

)2)2

dx = 2π

∫ r
2

0

r2 −
(
x+

r

2

)
dx =

5πr3

12

(here we used the fact that (x + r
2 )2 + y2 = r2, and solved for y. This looks a

bit strange, but remember that your height is really on the left sphere, not on the
right one!)

6.2.68. This is much easier with the shell method of section 6.3. Here K = 0,

f(x) =
√
R2 − x2 (since x2+y2 = R2), and so

∫ R
r

2πx
√
R2 − x2dx = 2π

3

(
R2 − r2

) 3
2

(use the substitution u = R2 − x2)



SOLUTION − BANK 71

Section 6.3: Volumes by cylindrical shells

6.3.2.
∫√π
0

2πx sin(x2)dx = 2π (use the substitution u = x2)

6.3.13. Shell method: K = 0, |y − 0| = y, Outer = 2, Inner = 1+(y−2)2, Points of

intersection y = 1, y = 3, so
∫ 3

1
2πy(2−(1+(y−2)2))dy =

∫ 3

1
2πy(1−(y−2)2))dy =

16π
3 .

6.3.15. Shell method: K = 2, |x− 2| = 2 − x, Outer = x4, Inner = 0,
∫ 1

0
2π(2 −

x)(x4)dx = 7π
15

6.3.19. Shell method: K = 1, |y − 1| = 1− y, Outer = 1, Inner = 3
√
y,
∫ 1

0
2π(1−

y)(1− 3
√
y)dy = 5π

14

6.3.46. Shell method: K = 0, |x| = x, Outer =
√
r2 − (x−R)2 (use the fact that

(x−R)2 +y2 = r2), Innter = −
√
r2 − (x−R)2, so

∫ R+r

R−r 2πx2
√
r2 − (x−R)2dx =

π2Rr2 (use the substitution u = x−R, and remember what you did in 5.5.73)

6.3.48. Shell method: K = 0, |x| = x, Outer = 2
√
R2 − x2 (use the fact that

x2 + y2 = R2), Inner = 0,

∫ R

r

2πx(2
√
R2 − x2)dx =

4π

3
(R2 − r2)

3
2 =

4π

3

((
h

2

)2
) 3

2

=
4π

3

h3

8
=
πh3

6

(use the substitution u = R2 − x2, and the fact that r2 + (h2 )2 = R2 by the
Pythagorean theorem)


